

Proceedings of the First

University Journal of

Research and Innovation

December, 2019

Organized by

University of Computer Studies (Pakokku)

U J R I

Proceeding of

The First University Journal of Research and Innovation 2019

December , 2019

Organized by

University of Computer Studies (Pakokku)

Department of Higher Education ,

Ministry of Education , Myanmar

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

University Journal of Research and Innovation

Volume 1, Issue 1 2019

Editor in Chief

Dr.Tin Tin Thein , Pro-rector

University of Computer Studies (Pakokku)

Organizing Committee

Dr.Shwe Sin Thein

Dr.Swe Zin Aung

Dr.Moe Thuzar Htwe

Dr.Win Win Maw

Dr.Nwe Swe Aung

Dr.Khin Ma Lay

Daw San San Nwel

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

University Journal of Research and Innovation 2019

Volume 1 , Issue 1 , 2019

This journal and individual papers published at www.ucspkku.edu.mm.

All right reserved. Apart from fair dealing for the purposes of study,

research, criticism of review as permitted under the copyright Act, no

part of this book may be reproduced by any process without written

permission from the publisher.

Copies:110

All research papers in this journal have undergone rigorous peer-

reviewed which is published annually. Full papers submitted for

publication are refereed by the Associate Editorial Board through an

anonymous referee process.

The authors of the paper bear the responsibility for their content.

Papers presented at the First University Journal of Research and

Innovation(UJRI), University of Computer Studies (Pakokku),

December 2019.

http://www.ucspkku.edu.mm/

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

 Dr.Tin Tin Thein , Pro-rector , University of Computer Studies (Pakokku)

 Dr.Khin Aye Than , Pro-rector , University of Computer Studies (Dawei)

 Dr.Soe Lin Aung , Pro-rector , University of Computer Studies (Magway)

 Dr.Nang Soe Soe Aung , Pro-rector , University of Computer Studies (Lashio)

 Dr.Shwe Sin Thein , Prof. , University of Computer Studies (Pakokku)

 Dr.May Aye Khaing , Prof., University of Computer Studies , Yangon.

 Dr.Khine Khine Oo , Prof., University of Computer Studies ,Yangon.

 Dr.Win Htay , Prof., University of Computer Studies (Thaton)

 Dr.Moe Zaw Thawe , Prof., Defence Services Academy(Pyi Oo Lwin)

 Dr.Win Lei Lei Phyu , Prof. , University of Computer Studies ,Yangon.

 Dr.Swe Zin Aung , Prof. , University of Computer Studies ,Mandalay.

 Dr.Moe Thuzar Htwe , Prof. , University of Computer Studies (Pakokku)

 Dr.Aye Thida , Prof. , University of Computer Studies , Mandalay.

 Dr.Hnin Aye Than , Prof. , Myanmar Institute of Information Technology.

 Dr.Ami Kyaw , Prof. , Mandalay University

 Dr.Mar Mar Win , Prof. , Pakokku University

 Dr.Tin Tin Nwet , Assoc.Prof. , Technological University (Saging)

 Dr.Win Win Maw Assoc.Prof. , University of Computer Studies (Dawei)

 Dr.Nwe Swe Aung , Assoc.Prof. , University of Computer Studies (Pakokku)

 Dr.Khin Ma Lay , Assoc.Prof. , University of Computer Studies (Pakokku)

 Daw San San Nwe , Lecture , University of Computer Studies (Pakokku)

UJRI 2019 Editorial Board

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Editor in Chief

 Dr.Tin Tin Thein , Pro-rector , University of Computer Studies (Pakokku)

 Daw Thin Thin Nwel, Assoc.Prof., University of Computer Studies (Pakokku)

 Daw San San Nwel, Lecture , University of Computer Studies (Pakokku)

UJRI 2019 Editorial Board

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Proceedings of

The First University Journal of

Information and Computing Science 2019

December, 2019

Contents

Recognizing of Shan Syllables sound base on Convolution Neural

Network Model
Khin Hninn Phyu, Aye Thida Win

1-7

Prediction of Diabetes Diseases by Building a Machine Learning

Model
Hnin Ei Ei Cho, Nan Yu Hlaing

8-13

Development of Remote Health Monitoring System
Khin Kyu Kyu Win, Su Myat Thaung, Thi Thi Soe, Atar Mon

14-19

Text Independent Speaker Identification System By Perceptual

Linear Prediction(PLP)
Aye Thida Win , Khin Hninn Phyu

20-27

A Review on Big Data Analytics in Agriculture

Soe Soe Thet , San San Win

28-31

Artificial Intelligence & Machine Learning

Natural Language Processing

Big Data Analysis

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Application of Dijkstra’s Shortest Algorithm for Road Map

Estimation in Sagaing Region
Thin Thin Swe, San San Maw

32-38

A Study for Kruksal's MST Algorithm Based on Design and

Analysis of Computer Algorithms Courses
Aye Aye Naing, Soe Moe Aye

39-45

A Spanning Tree with Minimum Weight of the One City and Six

Towns in Mandalay Region
Mon Yee Aye

46-50

Automatic Detection and Classification of Rece Leaf Diseases

Using Image Processing
Pa Pa Lin

51-56

Analysis of High Performanance Computing using Raspberry Pi

Cluster on High Computational Problem
Mar Lar Win, Khin Mar Aye, Myo Hein Zaw

57-63

Idntification of Myanmar Rice Seeds by Size and Shape Features
Zon May Thet, Khin Thu Zar Win, Su Mon Thwin

64-70

Multi-Face Recognition for University Classroom Attendance

System Using Face Recognition Technique
Thida Nyein, Aung Nway Oo

71-75

License Plate Locatization and Recognition using OCR based on

k-NN
Thida Win, Hnin Ei Latt, Yin Mon Swe

76-80

Designing Effective User Interface for Healthcare Applications
Thet Thet Aye Mon, Ei Ei Mon, Lwin Lwin Nyo

81-85

Parallel & Distributed Computing

Image Processing

Human Computer Interaction

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Precison and Recall in the Evaluation of Information Retrieval
Yi Mar Myint

86-92

A review on the staus of e-government implementation challenges

in Myanmar
Moe Thida Naing , Myint San , Mie Mie Aung

93-99

Academic Education 4.0 in the Era of Industry 4.0
San San Nwel, Kyaut Kyaut Khaing, Ei Chal Mon, Tin Tin Thein

100-105

Smart Card Extraction for Immigration and Population System
Kyault Kyault Khaing, San San Newl, Khaing Khaing Soe

106-110

Information System Adoption of Private Hospitals in Mandalay

Region
Kyi Kyi Thant , Thiha Htun

111-116

Database Security on Student Result System by Using Database

Management System
Thin Thin Yi , Zin Mar Yin , Phyu Phyu Myint

117-122

A Lan Campus Infrastructure with Spanning Tree Protocol Attack

and Mitigation
Zin May Aye

123-129

Evaluation of Fiber Optic Link Performanace: Calculating power

Budget, Loss Budget and Distance Estimation
Thazin Nwe , Mar Lar Win , Khin Mar Aye

130-136

Implementation of Knot DNS Server
Myint Myint Than

137-143

A Survey of Instruction Detection System for Software Defined

Networking
Khaing Khaing Soe, Lai Yi Aung, Mya Mya Htay, Kyault Kyault Khaing,

Nay Aung Aung

144-150

Simulation of GSM Based Fire Safety Security Control System
Khin Ei Ei Khine , Yin Yin Mon , Nyan Linn

151-157

Database Management System & Information Retrieval

Network & Security

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Text Classification using Vector Space Model and K-Nearest

Neighbor Algorithm
Hnin Wut Yee , Khin Sein Hlaing

158-164

Online Shopping System using K-means Clustering for User

Recommendation
Thwe Thwe Win

165-170

Comparison of Classification Methods on Breast Cancer Data
San San Win , Soe Soe Thet

171-175

Customer Churn Analysis in Banking Sector
Saw Thazin Khine , Win Win Myo

176-180

Pregnancy Risk Outcomes Prediction using FRAM and Naïve

Bayes
Kyawt Shin Thu, Khin Ei Ei Chaw

181-187

Comparative Performance Analysis of Educational Data Using

Weka and Orange
Nwet Yin Tun Thein , Tin Tin Hmwe

188-194

A Review of Data Mining Techniques and Their Applications in

Business
Tin Tin Hmwe , Nwet Yin Tun Thein , Swe Swe Myint

195-200

Changing from Traditional Retail Transaction to Electronic Retail

Transacation Utilizing B2C E-Commerce Model
Aye Htike San, San San Nwel, Thinn Thinn Nwe

201-205

Design and Implementation of E-Commerce System using

Cassandra NoSQL Database
Zin Mar Yin , Win Lei Kay Khine , Thin Thin Yi

206-212

Calculate the Profit and Loss of Information System by Using

Time Value of Money (TVM)
Tue Tue Mar

213-217

Cost Estimation of Ball-Pen Production System
Lwin Lwin Nyo, Thet Thet Aye Mon, Phyu Phyu Myint

218-224

Data Mining & Machine Learning

Digital Business Management

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Pic Based Room Temperature Control System Using DC Fans For

Home Power Reducing
San San Wai , Kham Kham Saing , Poe Ei Phyu

225-231

Construction of Home Lighting Control System Using Touch

Sensor
Aung San Min , Min Soe Tun , Swe Wunna

232-237

Effect of Dopant Li Concentration on Optical and Electrical

Properties of Li/TiOx Compsite Films
Nwe Nwe Kyi, Nyein Wint Lwin,Than Zaw Oo

238-242

Design and Control of Water Level Indicator
MyaMya Htay, KhaingKhaingSoe, San San Newl, Lai Yi Aung

243-248

Design and Construction of Digital Fire Alarm System for

Multipurpose
Moe Min Min Aye , San Htar Oo , Aung Ye Htun , Yin Lae Aung

249-255

A Predictable Memory Controller for SDRAM
yee yee soe

256-264

Microcontroller Based Automatic Monitoring Exit/ Entry Counter

For Public Areas
Kham Kham Saing , San San Wai , Poe Ei Phyu

265-271

Construction of Microcontroller Based Fow Rate Display
Yoon Mone Phoo , Tin Tin Pyone

272-276

Gas Leakage Detector By Using Arduino UNO & MQ-2 Sensor
Khin Thandar Myint , Saw Mya Nandar , Moe Thuzar Htwe

277-280

The Use of Moodle E-learning Platform: A Study in University of

Computer Studies(Pakokku)
San San Nwel, Lai Yi Aung, Khaing Khaing Soe, Tin Tin Thein

281-286

A Study of Cloud Computing Technology
Lai Yi Aung, San San Nwel, Khaing Khaing Soe, Mya Mya Htay

287-293

Cloud Computing

Electronics

Embedded System

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Effective Features of Web Search Engines
Ei Chal Mon

294-297

Object-Oriented Hypermedia Design Methology in Modrn Web

Information Systems
Thae Thae Han, Mar Lar Htun, Mie Mie Aung

298-302

Analysis of Noise Cancellation using LMS and RLS Algorithms
Aye Theingi Oo, Theingi Ait, Nay Win Zaw

303-310

Stability of Transfer Function in Discrete-time System Using

MATLAB SIMULINK
Khaing Zin Win, Myint Myint Yi, Zay Oo Maung, Phyu Pyar Wai

311-315

Interconversion Of Various Number Systems In Digital

Technology
Moe Moe Thein, Thae Thae Han, Nyein Nyein Hlaing

316-320

Structure Calculation of Mass 9 ˄-Hypernuclei
Sandar Myint Oo

321-326

Proton Single Particle Energy Levels in 56Fe by using Numerov

Method
San San Mon, Tin Tin Nwe , Min Soe Tun

327-331

Two-Neutron Separation Energies of Even-Even Silicon Isotopes

in Effective Lagrangian Model
Thida Aye

332-337

Digital Signal Processing

Software Engineering and Web Engineering

Theoretical Nuclear Physics

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Synthesis And Identification of Naa (Plant Hormone) From Coal

Tar
Khin Mooh Theint, Tin Myint Htwe

338-344

Biosynthesis of Colloidal Silver Nanoparticles Using Coriander

Leaf Extract
Myo Myint Aung, Aye Aye San, Mar Mar Swe, Su Thaw Tar Wint

345-349

Influence of Trichoderma Compost Biofertilizer and Chemical

Fertilizer on Tomato Plant Cultivation
Thet Su Min, Ni Ni Aung

350-358

Phytochemical Constituents Antimicrobial Activities, Isolation and

Functional Groups Identification of the Pure Unknown Compound

from the Stem Bark of Croton oblongifoliusSieber ex Spreng.(That

Yin Gyi)
N Khawn San, Po Po Than Htike, Ni Ni Aung

359-364

Decolorizing Properties of Dyes by Using Biosorbent Chitosan

from Prawn Shell
Ni Ni Pe, San San Win, Lwin Mu Aung

365-372

Stability of Karman Vortex Street and Drag Coefficient for the

Various Shapes of Obstacles
Nwe Swe Aung

373-380

Optimal Order Quantity System By Using Demand Forecasting

Techniques
Lin Lin Let , Nwe Swe Aung , Aye Myat Mon Than

381-386

Application of Markov Chain to Foretell Watches Sales on

Specific Periods
Nila Aung Khaing , Khin Myat Zin

387-392

Solving Two Person Nonzero Sum Games
Win Thant Sin

393-399

Material Science

Mathematics

University Journal of Research and Innovation , Volume 1 , Issue 1 , 2019

Elemental Analysis of Olax scanden by EDX Method
Hmwe Hmwe Kyu

400-405

Water Quality Assessment of Tube Well Water from Selected

Area in Loikaw Region, Myanmar
Khin Htay Win, Thidar Khaing , Yinn Kay Khaing

406-411

Effective Approaches to Developing the Writing Skill
CHO CHO WIN

412-417

Students' Different Attitudes towards Learning English and Some

Collaborative Learning Approaches as a Tool of Enhancing

Student's Language Proficiency
Khin Hnin Si

418-424

A Study of the Difficulties of Speaking Skills and How to Improve

them
Htay Htay Won

425-432

Perspectives of Non-Major English Teachers on EFL Students at

UCS_PKKU
Htet Hlaing Nyein

433-436

Khin Ma Lay

437-446

 (၃)
Myint Hlaing

447-453

" "
May Myo Swe, Yi Yi Maw, Su Hlaing Win

454-466

English Language

Myanmar Language in Literature

Experimental Nuclear Physics

Author Index

Author Page No.

A

Aye Thida Win…………………………………………………… 20

Aye Aye Naing…………………………………………………... 39

Aye Htike San……………………………………………………. 200

Aung San Min……………………………………………………. 231

Aye Theingi Oo………………………………………………….. 303

C

Cho Cho Win…………………………………………………….. 412

E

Ei Chal Mon……………………………………………………… 294

H

Hnin Ei Ei Cho…………………………………………………… 8

Hnin Wut Yee……………………………………………………. 158

Hmwe Hmwe Kyu……………………………………………….. 400

Htay Htay Won…………………………………………………... 425

Htet Hlaing Nyein………………………………………………... 433

K

Khin Hninn Phyu………………………………………………… 1

Khin Kyu Kyu Win………………………………………………. 14

Kyault Kyault Khaing……………………………………………. 106

Kyi Kyi Thant……………………………………………………. 111

Khaing Khaing Soe………………………………………………. 144

Khin Ei Ei Khine…………………………………………………. 151

Kyawt Shin Thu………………………………………………….. 180

Kham Kham Saing……………………………………………….. 265

Khin Thandar Myint……………………………………………... 277

Khaing Zin Win………………………………………………….. 311

Khin Mooh Theint……………………………………………….. 338

Khin Htay Win…………………………………………………… 406

Khin Hnin Si……………………………………………………... 418

Khin Ma Lay…………………………………………………….. 437

Author Page No.

L

Lwin Lwin Nyo…………………………………………………... 217

Lai Yi Aung…………………………………………………........ 287

Lin Lin Let……………………………………………………….. 381

M

Mon Yee Aye…………………………………………………….. 46

Mar Lar Win.…………………………………………………….. 57

Moe Thida Naing………………………………………………… 93

Myint Myint Than……………………………………………….. 137

Mya Mya Htay…………………………………………………… 242

Moe Min Min Aye……………………………………………….. 248

Moe Moe Thein………………………………………………….. 316

Myo Myint Aung………………………………………………… 345

Myint Hlaing..……………………………………………………. 447

May Myo Swe..…………………………………………………... 454

N

Nwet Yin Tun Thein……………………………………………... 187

Nwe Nwe Kyi……………………………………………………. 237

N Khawn San…………………………………………………….. 359

Ni Ni Pe………………………………………………………….. 365

Nwe Swe Aung…………………………………………………... 373

Nila Aung Khaing………………………………………………... 387

P

Pa Pa Lin…………………………………………………………. 51

S

Soe Soe Thet……………………………………………………... 28

San San Nwel…………………………………………………….. 100

San San Win……………………………………………………… 171

Saw Thazin Khine...……………………………………………… 176

San San Wai……………………………………………………… 224

San San Nwel…………………………………………………….. 281

Sandar Myint Oo…………………………………………………. 321

San San Mon……………………………………………………... 327

Author Page No.

T

Thin Thin Swe.…………………………………………………... 32

Thida Nyein…………………………………………………........ 71

Thida Win.……………………………………………………….. 76

Thet Thet Aye Mon..…………………………………………….. 81

Thin Thin Yi.…………………………………………………….. 117

Thazin Nwe...…………………………………………………….. 130

Thwe Thwe Win…...…………………………………………….. 165

Tin Tin Hmwe..………………………………………………….. 194

Tue Tue Mar.…………………………………………………….. 212

Thae Thae Han.………………………………………………….. 298

Thida Aye.……………………………………………………….. 332

Thet Su Min…..………………………………………………….. 350

W

Win Thant Sin...………………………………………………….. 393

Y

Yi Mar Myint……...……………………………………………... 86

Yee Yee Soe..……………………………………………………. 256

Yoon Mone Phoo..……………………………………………….. 272

Z

Zon May Thet……………………………………………………. 64

Zin May Aye…..…………………………………………………. 123

Zin Mar Yin.……………………………………………………... 205

32

Application of Dijkstra’s Shortest Path Algorithm for Road Map

Estimation in Sagaing Region

 Thin Thin Swe San San Maw

 Department of Engineering Mathematics Department of Engineering Mathematics

 Mandalay Technological University Mandalay Technological University

 Mandalay, Myanmar Mandalay, Myanmar.

 thinthinswe.dr.mtu@gmail.com dr.sansanmaw2017@gmail.com

Abstract

This research paper concerns with the

application of the Dijkstra’s algorithm in graph

theory for the estimation of shortest road map

to eleven destinations in Sagaing region. This

algorithm can be used to find the shortest paths

with positive weight graph from a single source

node to a single destination node by denoting

permanent if it has been determined. In this

paper, Sagaing is used as a source node and the

other ten towns in Sagaing region are used as

destination nodes. The goal of this paper is to

find the shortest paths from Sagaing to other

towns by comparing the weighted values

between any two different paths with their edge

lengths that assigned by actual values. The

values of distances and time between any two

destinations are taken from Myanmar distance

calculator website and compared the accuracy

of the results using those values in Google Map.

Keywords— Path Finding, Weighted Graph, Shortest

Paths, Dijkstra’s Algorithm. Myanmar distance

calculator.

1. Introduction

Sagaing region is an administrative region of

Myanmar, located in the north-western part of

the country. The region has an area of 93527 km
2

and the largest region among the seven regions in

Myanmar. The capital city of Sagaing region is

Monywa. Sagaing region consists of 10 districts

divided into 34 townships with 198 wards and

villages. The major towns in this region are

Monywa, Shwebo, Sagaing, Yinmarbin,

Kanbalu, Katha, Tigyaing, Kale, Tamu, Mawlaik

and Pinlebu [1]. In many fields of applications,

graphs theory [2] plays vital role for various

modelling problems in real world such as

travelling, transportation, traffic control,

communications, and various computer

applications and so on. This paper provides the

shortest paths from one place to another by using

Dijkstra’s Algorithm in graph theory [3], [4].

Firstly, the descriptions of the algorithm are

presented. Then the steps of the algorithm are

explained. Finally the detailed implementation of

the algorithm is illustrated to find the optimal

paths for travelling to the eleven major towns in

Sagaing region with shortest distances and

minimum time.

2. Resources and Method

A graph G consists of two finite sets, a set V

of points, called vertices, and a set E of

connecting lines, called edges, such that each

edge connects two vertices, called the endpoints

of the edge [1]. Although straight lines are used

to represent the edges, they are not straight in

practice. Any place can be visited from any other

place directly because all the destinations are

linked by roads to each other. In this case, it is

very important to find the shortest route, i.e., the

route with the shortest total mileage or minimal

travel time for overall trip. In this paper we

consider one-to-all shortest path problem for

determining the shortest path from a start town,

Sagaing, to all the other ten famous destinations

in Sagaing region.

33

2.1 Problem Definition

The problem of finding the shortest path
between two intersections on a road map may be
modeled as a special case of the shortest path
problem in graphs, where the vertices correspond
to intersections and the edges correspond to road
segments, each weighted by the length of the
segment [1]. For a traveller, who wants to visit
all interesting and famous places in a region, it is
important to know the effective way. In this
situation, not every road is equal. Some of them
are longer, some aren't in good shape, and some
have more traffic. i.e., you need more time for
traversing some roads than other. We may
represent that time with weights that we assign to
the roads. When you plan a journey, there are
different factors you might consider such as the
shortest distance, the minimum time and the
lowest cost for effective travelling. In this paper,
we consider to optimize distance and time. The
travelling cost from one place to another is not
considered because costs are changed according
to time period we collected.

2.1.1. Dijkstra’s Iterative Shortest Path

Algorithm

Dijkstra’s algorithm, published in 1959 and

named after its creator Dutch computer scientist
Edsger Dijkstra, can be applied on a
weighted graph [1]. The graph can either be
directed or undirected. The following are the
simple steps of the Dijkstra’s algorithm:

Step 1. Initialization

- Label the start vertex as 0.
- Box this number (permanent label).
- Label each vertex that is connected to the

start vertex with its distance (temporary
label).

Step 2. Box the minimum number.

- From this vertex, consider the distance to

each connected vertex.

- If a distance is less than a distance already

at this vertex, cross out this distance and

write in the new distance. If there was no

distance at the vertex, write down the new

distance.

Step 3. Repeat from step 2 until the destination

vertex is boxed.

When a vertex is boxed you do not reconsider

it. You need to show all temporary labels

together with their crossing out. The Dijkstra’s

algorithm for shortest paths is as follows: [2];

Figure 1. Flowchart for Dijkstra’s shortest

path algorithm

3. Result and Discussion

In this paper, the application of Dijkstra’s

algorithm to effective travelling from Sagaing to

other ten towns in that region has been

illustrated. Everyone who wants to travel needs

to optimize the route for saving time and money.

Although the detailed calculation for optimal

result of distance has been focused, the other

factors such as travel time that may effect in

travelling have also been considered in this

paper. Firstly, the weights on the links are

referred as distances (km) for corresponding

route.

https://brilliant.org/wiki/graphs-basic/

34

Figure 2. Representation of towns in Sagaing

region by weighted distance (km) connected

graph [5]

3.1. Implementation of the Algorithm

The implementation steps of the Dijkstra’s

shortest path algorithm are presented as follows:

Step 1– To define the initial (start) town and

label that point as number zero and

box it (named it as permanent or

current).

Step 2 – To search the towns that can be reached

from permanent (current) and select the

nearest town by using the formula;

where is the distance of adjacent town

 . is the distance value for the index

of the current town, is the distance

values between town and town.

Step 3– Repeat the step 2 until all destination

towns are permanent by changing the

updated town with shortest distance to

permanent list and box it. If we cannot

reach any temporary labelled node from

the current node, then all the temporary

labels become permanent.

Step 4– Construct a minimum spanning tree to

describe the shortest distances from

start town to other destination towns in

given network.

In this paper, we illustrate to find the optimal

path (minimum spanning tree for shortest paths)

from Sagaing to other destination towns in

Sagaing region as follows.

Step 1

Sagaing (SG) is designed as the current town

and the state of the SG is (0, p). Every other

town has state .

Figure 3. The states of current town Sagaing

(SG) as permanent

Step 2

The towns named Monywa (MY) and

Shwebo (SB) can be reached from the current

town SG. Update distance values for these cities;

Hence the shortest distance is 93.28 at

Shwebo (SB).

Box the number 93.28 at Shwebo and the

state label at SB changes to permanent so its

state is (93.28, p) while the states of Monywa

(MY) remain temporary.

SB becomes the current town as shown in

Figure 4.

35

Figure 4. Showing the current town Shwebo

Step 3

We are not done, not all towns have been

reached from SG, so we perform another

iteration step (back to step 2).

Another implementation of step 2:

Monywa (MY), Kanbalu (KBL) and

Tigyaing (TG) can be reached from the current

city SB.

Update distance value for these towns.

Hence the shortest distance is 114.33 at

Monywa (MY).

Box the number114.33 at Monywa and the

state label at MY changes to permanent so its

state is (114.33, p) while the states of KBL and

TG remain temporary.

Monywa becomes the current town as shown

in Figure 5.

Figure 5. Showing current town Monywa

Another Step 2

Yinmabin (YMB), Kale (KL) and Mawlaik

(ML) can be reached from the current town

Monywa (MY).

Update distance value for these towns.

Now between the towns YMB and ML, the

shortest distance is 161.15 at Yinmabin (YMB).

Box the number 161.15 at Yinmabin and the

state label at YMB changes to permanent so its

state is (161.15, p) while the states of Mawlaik

(ML) remain temporary.

YMB becomes the current town as shown in

Figure 6.

Figure 6. The states of current town

Yinmarbin (YMB) as permanent

Similar repeated calculation can be done for

step 2 again and again until all towns have been

changed to permanents.

Step 4

The final graph showing the minimum

spanning tree of distances from start town,

Sagaing, to other towns can be seen as follows:

36

Figure 7. The minimum spanning tree of

shortest paths (km) from Sagaing to other

towns in Sagaing region

The values assigned at each town (node)

shown in graph with red-boxes, Figure 7, are the

shortest distances to travel from Sagaing.

Likewise, we can start any town and using the

same algorithm to travel any other towns in

effective way [6]. The order of towns forming

permanent or current destinations for each

iteration steps is Sagaing, Shwebo, Monywa,

Yinmabin, Kalay, Mawlaik, Kanbalu, Tigyaing,

Pinlebu, and Katha. Tamu is an end town of the

network because its adjacent towns, Kale and

Mawlaik, are already selected as permanent

towns. So it is automatically selected as

permanent by implementation step 3.

We can also calculate for the minimum travel

time started from Sagaing to other towns using

the actual travel time (hour) between any two

pair of towns from Myanmar distance calculator

as weights and described on each road (edges)

respectively [7].

Figure 8. Travel time (hour) between all pair

towns in Sagaing region

Similar algorithm can be done to find the

shortest path for minimum time travel and the

final result is illustrated in figure 9.

Figure 9. The minimum spanning tree of

shortest paths (hour) from Sagaing to other

towns in Sagaing region

37

The values assigned at each town shown in

given network with red-boxes, Figure 9, are the

minimum time for travelling from Sagaing to

respective towns. We can see that the final

minimum spanning tree for minimum time is the

same as that for shortest distance. But the order

of forming permanent town of Katha and Pinlebu

is changed because of road qualities between

those towns.

Table 1. Optimum results and shortest paths

from Sagaing to other destinations in Sagaing

region

Star

t

Destina

tion

Shortes

t

Distanc

e (km)

Minim

um

Time

(hr)

Shortest

Paths

SG

MY 114.33 2.13 SG-MY

SB 93.28 1.77 SG-SB

YMB 161.15 3.21 SG-MY-YMB

KBL 198.11 4.07 SG-SB-KBL

KL 349.73 9.46 SG-MY-KL

ML 366.76 9.58 SG-MY-ML

TG 291.88 5.74 SG-SB-TG

KT 387.46 7.99
SG-SB-TG-

KT

PLB 338.46 8
SG-SB-KBL-

PLB

TM 464.15 11.53
SG-MY-ML-

TM

The last column of above table shows the

shortest paths for each pair of places on both

distance and time. All of the shortest paths for

distance and time are the same. This means that

the qualities of all roads on those routes are

almost the same. The results obtained from

research using Dijkstra’s shortest paths algorithm

have been compared with the data from Google

Map and described in the following table 2.

Table 2. Comparison for the result in table 1

with Results from Google map [8]

S

t

a

r

t

T

o

w

n

Desti

natio

n

town

Results from

research

(Dijkstra)

Results from

Google Map

Difference

Shorte

st

distan

ce

(km)

Time

(hr)

Dista

nce

(km)

Time

(hr)

Dista

nce

(km)

Time

(hr)

S

A
G

A

I

N

G

MY 114.33 2.13 114 2.08 0.33 0.05

SB 93.28 1.77 93.3 1.78 -0.02 -0.01

YM

B
161.15 3.21 156 2.98 5.15 0.23

KBL 198.11 4.07 198 4.01 0.11 0.06

KL 349.73 9.46 345 9.26 4.73 0.2

ML 366.76 9.58 362 9.33 4.76 0.25

TG 291.88 5.74 266 5.68 25.88 0.06

KT 387.46 7.99 361 7.97 26.46 0.02

PLB 338.46 8 335 7.67 3.46 0.33

TM 464.15 11.53 454 11.33 10.15 0.2

The last two columns in the table 2 show the

difference between shortest paths and minimum

time from algorithm and Google map. According

to the difference data from above table, the

accuracy of the results from Dijkstra’s algorithm

is reliable for practical situation.

3.2. Comparison and Recommendation

There are many algorithms to find the

shortest paths in various situations but the special

features of these algorithms are different. For

example, Dijkstra’s algorithm and Bellman Ford

algorithm are both single-source shortest path

algorithms but Dijkstra can only be used to find

the shortest paths for positive weights and

Bellman Ford is to handle for negative weight

and circle in a graph. On the other hand, Floyd

Warshall algorithm is for all sources to all

destinations. The calculation time of Dijkstra

algorithm is , while Bellman Ford and

Floyd Warshall algorithms are and

38

respectively where n is the number of nodes and

m is the number of edges in the network [9].

Dijkstra’s algorithm is the most efficient one

to find the shortest paths. It can be applied to

both directed and undirected graphs, and

calculation time is considerably faster than other

algorithms. For these reasons and above

comparison, we strongly recommend that

Dijkstra’s algorithm is an algorithm to get the

best solution for finding shortest paths [6].

4. Conclusion and Future Works

In this work, Dijkstra’s Algorithm is used to

get the optimal results using actual distances and

travel time between any two nodes (towns).

Detailed descriptions and step by step procedure

of the algorithm has been described with a

flowchart and illustrated by determining the

shortest paths started from Sagaing to other

towns in Sagaing region using actual weighted

values between any two towns. The accuracy of

the results obtained from the research has been

proved by comparing the results from Google

Map. For further studies, this algorithm can also

be applied to find the optimal results for traffic

control, path finding in social networks,

computer games, transportation systems, and

operations research etc. Moreover, based on the

flowchart and detailed calculation procedure, one

can create computer codes such as C/C++ or

JAVA, running these codes using various

weighted values from actual information and

data to solve general Dijkstra’s shortest path

problems.

Acknowledgments

The author would like to acknowledge her

thank to Dr. Lin Lin Naing, Professor and Head,

Faculty of Computing, University of Computer

Studies, Hinthada, Ayeyarwady region and

Dr. San San Maw, Professor, Department of

Engineering Mathematics, Mandalay

Technological University, Mandalay, Myanmar

for their encouragement, invaluable comments

and perfect supervision throughout my research

work.

References

[1] Dijkstra's algorithm (2019), [Online]. Available:

https://en.wikipedia.org/wiki/Dijkstra%27s_algo
rithm

[2] E. Kreyszig, Advanced Engineering Mathema -
tics,10th edition. John Wiley & Sons, Inc., 2011,
pp.970-990.

[3] P. Sharma, A. Planiya, “Shortest Path Finding of
Wireless Optical Network using Dijkstra
Algorithm and Analysis of Delay and Blocking
Probability”, International Journal of Research
and Scientific Innovation (IJRSI). Vol. 3, Issue
4, April 2016.

[4] Solving Shortest Path Problem: Dijkstra’s
Algorithm, Lecture Note on Operations Research
Methods. October 23, 2009. [Online]. Available:
https://www.ifp.illinois.edu/~angelia/ge330fall0
9_dijkstra_l18.pdf

[5] Myanmar Map [Online]: Available: http://www.
un.org/Depts/Cartographic/map/profile/myanm-
ar.pdf

[6] S. S. Maw, K. S. Lin, L. L. Naing, “Dijkstra’s
Algorithm for Effective Travelling to the Most
Famous Destinations in Myanmar”, International
Journal of Mathematics Trends and Technology
(IJMTT). Volume 65 Issue 8, August 2019. pp-
4-12. [Online]: Available: https://www
ijmttjournal.org/ Volume-65/Issue-8/IJMTT-
V65I8P502.pdf.

[7] Myanmar Distance Calculator [Online]
Available: https://distance calculator.globefeed.
com/Myanmar_ Distance_ Calculator.asp

[8] Google Map (2019). [Online]: Available:
http://maps.google.com

[9] Z. Ali, “Comparison of Dijkstra's Algorithm
with other proposed algorithms”. International
Academic Journal of Science and Engineering,
Vol. 3, No. 7, 2016, pp. 53-66.

39

A Study for Kruskal’s MST Algorithm Based on Design and Analysis of

Computer Algorithms Courses

Aye Aye Naing, Soe Moe Aye

University of Computer Studies (Pakokku)

aanaing85@gmail.com

Abstract
Many problems in engineering and science can be

formulated in terms of undirected or directed graph.

To solve these problems, there are many algorithms.

These are minimum spanning tree algorithms,

transitive closure algorithms, shortest path algorithms,

and so on. Among these, finding a minimum spanning

tree (MST) of a graph is also a well known problem in

graph theory with many practical applications. For

example: travelling from one city to another city,

designing the electronic circuitry, designing the

telecommunication network and so on. In this paper,

we focused on AA (Design and Analysis of Computer

Algorithm) theory to teach algorithms. This paper

discussed Kruskal’s Minimum Spanning Tree (MST)

algorithm.

KEYWORDS: graph, spanning tree, MST, vertices,

edges

1. Introduction

Let G= (V, E) be a connected, undirected graph

with a cost function mapping edges to real numbers. A

spanning tree is an undirected tree that connects all

vertices in V. The cost of a spanning tree is just the

sum of the cost of its edges. MST of G is a subset of E

that forms a spanning tree of G with the least cost [1].

MST is one of the well-known classical graph

problems which has many critical applications in

network organization, VLSI layout and routing, touring

problems, partitioning data points into clusters and

various other fields. It was in 1926 that Boruvka [2]

produced the first fully algorithm to find the MST. At

later time, Kruskal and Prim developed the two most

commonly used MST algorithms, Kruskal’s algorithm

[3] and Prim’s algorithm [4], respectively. Kruskal’s

algorithm works on both connected and disconnected

graph while Prim’s algorithm can work only on the

connected graph.

 In this paper, Kruskal’s MST algorithm is

discussed and the main core work is presenting its

implementation in C++ language and its time

complexity. Kruskal’s algorithm is one of the most

known algorithms that address the MSF problems. The

strictly ordered examination of the graph’s edges in

order to decide whether they are part of the MSF or

not, prohibits the usage of well known parallel

strategies, like data partitioning.

 The rest of the paper is organized as follows:

section 2 looks at the works relating to Kruskal’s

algorithm. Section 3 explains about how Kruskal’s

algorithm works with example. Section 4 presents the

implementation with the source code and explains the

time complexity. Section 5 concludes the paper and

gives its future work.

2. Related Works

Prim’s algorithm starts with a tree that has only

one edge, the minimum weight edge [5]. The edges (j,

q) is added one by one such that node j is already

included, node q is not included and weight wt(j, q) is

the minimum amongst all the edges (x, y) for which x

is in the tree and y is not. In order to execute this

algorithm efficiently, we have a node index near(j)

associated with each node j that is not yet included in

the tree. If a node is included in the tree, near(j) = 0.

The node near(j) is selected into the tree such that wt(j,

near(j)) in the minimum amongst all possible choices

for near(j).

 In [6], Munier et al. presented shared memory-

based parallel implementations of Kruskal’s and

Prim’s algorithms. To program the shared memory

parallel machines, they used serial code with compiler

directives method. They did the analysis the parallel

MST programs executed using classical multi threaded

and openMP-based execution models. The experiment

showed that their proposed parallel algorithms achieve

better performance than serial ones.

 [7] proposed a simple modification of Kruskal’s

algorithm that avoids sorting edges that are obviously

not in MST. This algorithm runs in time

) for arbitrary graphs with random

edge weights. The experiment showed that this

proposed algorithm outperforms the original Kruskal’s

algorithm when the number of edges is increased.

V. Loncˇar et al. [8] proposed parallel variants of

Kruskal’s and Prim’s algorithm and made massage

passing parallel machine with distributed memory.

They considered the large graphs that can not fit into

memory of one process. The experimental result

showed that Prim’s algorithm is a good choice for

dense graphs while Kruskal’s algorithm is better for

sparse ones. Poor scalability of Prim’s algorithm

comes from its high communication cost while

Kruskal’s algorithm showed much better scaling to

larger number of processes.

In [9], A. Katsigiannis et al. considered helper

threading scheme used to parallelize efficiently

Kruskal’s Minimum Spanning Forest algorithm. First

of all, this scheme employs a main thread that executes

the regular, sequential Kruskal’s algorithm and at each

iteration, examines the edge with the next minimum

weight. At the same time, a number of helper threads

run concurrently with the main one and examine edges

of bigger weight, checking whether they create a cycle

40

if added to current MSF. Whenever a cycle is

discovered, the corresponding edge is marked as

discarded. As these edges have been safely excluded

from the MSF, the main thread needs to check only the

edges that weren’t rejected by the helper threads, thus

performing less work compared to the sequential

implementation. The more cycles found by the helper

threads, the more offloading will be accomplished for

the main thread.

3. Minimum Spanning Tree

Given a connected and undirected graph,

a spanning tree of that graph is a sub graph that is a

tree and connects all the vertices together. A single

graph can have many different spanning

trees. A minimum spanning tree (MST) or minimum

weight spanning tree for a weighted, connected and

undirected graph is a spanning tree with weight less

than or equal to the weight of every other spanning

tree. The weight of a spanning tree is the sum of

weights given to each edge of the spanning tree. A

minimum spanning tree is a special kind of tree that

minimizes the lengths (or “weights”) of the edges of

the tree. This paper discusses Kruskal’s Algorithm and

Prim’s Algorithm. Both are greedy algorithm to find

the MST.

3.1 Kruskal’s MST Algorithm

Kruskal’s Algorithm builds the spanning tree by

adding edges one by one into a growing spanning tree.

Kruskal's algorithm follows greedy approach as in each

iteration it finds an edge which has least weight, and

adds it to the growing spanning tree. Below are the

steps for finding MST using Kruskal’s algorithm:

 Sort all edges with respect to their weights

 Pick the smallest edge. Check whether it

forms a cycle with the spanning tree formed

or not. If cycle is not formed, include this

edge. Else, discard it.

 Repeat step 2 until there is no edge in the

sorted list.

The step 2 uses Union-Find algorithm to detect

cycle.

3.1.1 Union-Find Algorithm

Union-Find algorithm performs on disjoint-set

data structure. A disjoint-set data structure is a data

structure that keeps track of a set of elements

partitioned into a number of disjoint (non-overlapping)

subsets [10]. Union-Find algorithm has two operations:

 Find: Determine which subset a particular

element is in. This can be used for

determining if two elements are in the same

subset.

 Union: Join two subsets into a single subset.

3.2 Explanation with Example for of Kruskal’s

MST algorithm
Now, the explanation of how MST algorithm

works is given with the example. Figure 1 shows the

step by step procedures of Kruskal’s MST algorithm.

begin

1. T Ø;

2. VS Ø;

3. construct a priority queue Q containing

all edges in E;

4. for each vertex v V do add {v} to VS;

5. while || VS|| >1 do

 begin

6. choose (v,w), an edge in Q of lowest

cost;

7. delete (v,w) from Q;

8. if v and w are in different sets W1 and

W2 in VS then

 begin

9. replace W1 and W2 in VS by W1 W2;

10. add (v,w) to T

 end

end

 end

Figure 1.Minimum-cost Spanning Tree Algorithm

Figure 2.An Undirected Graph with Cost on Edge

Figure 2 is considered as undirected graph input.

According to step 3 of MST algorithm, the sorted list

of edges is generated as shown in Table 1.

 The followings steps are demonstration of from

step 4 to step 10 of the algorithm. When all of the

vertices have been added to the tree, the minimum

spanning tree is finally outputted with cost 57 as

shown in Figure 3.

1. Pick the edge v1-v7. No cycle is formed. Include it

25

V1

V3

V2

V6

V4

V7

V5

20

15

4 23
1

36 9

16 3

17

28

V1

V7

1

41

Table 1. Priority Queue List (Sorted List) of Edges

2. Pick the edge v3-v4. No cycle is formed. Include

it.

3. Pick the edge v2-v7. No cycle is formed. Include

it.

4. Pick the edge v3-v7. No cycle is formed. Include it.

5. Pick the edge v2-v3. This edge results in cycle.

Discard it.

6. Pick the edge v4-v7. This edge also results in

cycle. Discard it.

7. Pick the edge v4-v5. No cycle is formed. Include

it.

8. Pick the edge v1-v2. This edge results in cycle.

Discard it.

9. Pick the edge v1-v6. No cycle is formed. Include

it.

Figure 3. Minimum-cost Spanning Tree

3.3. Prim’s Algorithm

The Prim’s Algorithm is to pick the smallest

weight edge that does not cause a cycle in the MST

constructed so far. Let us understand it with an

example: Consider the below input graph.

 Figure 4: Undirected Graph with 9

Vertices and 14 Edges

The graph contains 9 vertices and 14 edges. So, the

minimum spanning tree formed will be having (9 – 1)

= 8 edges.

Now pick all edges one by one from sorted list

of edges.

1. Pick edge 7-6: No cycle is formed, include it.

2. Pick edge 8-2: No cycle is formed, include it.

Edge Cost

V1,v7 1

V3, v4 3

V2,v7 4

V3,v7 9

V2,v3 15

V4,v7 16

V4,v5 17

V1,v2 20

V1,v6 23

V5,v7 25

V5,v6 28

V6,v7 36

V1

V7

1

V3

V4

3

V3

V4

3

V3 V2 V1

V7

1
4

V3

V4

3

V3 V2 V1

V7

1
4

9
V3

V4

3

V3 V2 V1

V7

1
4

9

V3

V4

3

V3 V2 V1

V7

1 4

9

V5

17

V3

V4

3

V3 V2 V1

V7

1
4

9

V5

17

V6

23

42

3. Pick edge 6-5: No cycle is formed, include it.

4. Pick edge 0-1: No cycle is formed, include it.

5. Pick edge 2-5: No cycle is formed, include it.

6. Pick edge 8-6: Since including this edge results in

cycle, discard it.

7. Pick edge 2-3: No cycle is formed, include it.

8. Pick edge 7-8: Since including this edge results in

cycle, discard it.

9. Pick edge 0-7: No cycle is formed, include it.

10. Pick edge 1-2: Since including this edge results in

cycle, discard it.

11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals (V – 1), the

algorithm stops here.

4. Example Case Study for Traveling

Salesperson Problem
A less obvious application is that the

minimum spanning tree can be used to approximately

solve the traveling salesman problem. A convenient

formal way of defining this problem is to find the

shortest path that visits each point at least once. Note

that if you have a path visiting all points exactly once,

it’s a special kind of tree. For instance, twelve of

sixteen spanning trees are actually paths. If you have a

path visiting some vertices more than once, you can

always drop some edges to get a tree. So in general the

MST weight is less than the TSP weight, because it’s a

minimization over a strictly larger set.

On the other hand, if you draw a path tracing

around the minimum spanning tree, you trace each

edge twice and visit all points, so the TSP weight is

less than twice the MST weight. Therefore this tour is

within a factor of two of optimal.

5. Implementation and Analysis

In this section, implementation for Kruskal’s MST

algorithm is presented and its time complexity is also

considered in big O notation. For the implementation,

C++ language with GCC 32 bit release compiler is

used.

5.1Implementation Interface

Input : Undirected graph in Figure 2

Method: Pseudo Code in Figure 1

Output: Minimum spanning tree with cost 57 as shown

in Figure 5.

Figure 5: Minimum Spanning Tree with Cost 57

Displayed in Console Mode

 For this implementation, the node names of the

input graph are redefined as follows:

v11, v22, v33, v44, v55, v66, v77

 When the next undirected graph in Figure 7 is

considered as input, the minimum spanning tree with

cost 37 is generated as shown in Figure 6.

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem

43

Figure6: Undirected Graph with 9 Vertices and 14

Edges

Figure 7: Minimum Spanning Tree with Cost 37

and 8 Edges

5.2 Difference in Kruskal's algorithm and

Prim's algorithm

Both are greedy algorithm to find the MST.

However, let me show the difference with the help of

table:

5.3 Time Complexity and Experimental Run

Time

 For edges and vertices,

Sorting the edges :

Find operations : for at most find

operations

Union operation : O(VlogV) for at most union

operations

Thus, total run time

=

 = since the

maximum value can

be .

According to my experiment, the running time is

0.1 sec for 9 vertices and 14 edges implemented by

using C++ language with GCC 32 bit release compiler,

under Intel(R) Core(TM) i3CPU@2.10GHz and RAM-

4.00GB.

The following is the source code for MST

algorithm implementation.

#include<bits/stdc++.h>

using namespace std;

typedef pair<int, int> iPair;

struct Graph

{

 int V, E;

 vector< pair<int, iPair> > edges;

 Graph(int V, int E)

 {

 this->V = V;

 this->E = E;

 }

 void addEdge(int u, int v, int w)

 {

 edges.push_back({w, {u, v}});

 }

 int kruskalMST();

};

struct DisjointSets

{

 int *parent, *rnk;

 int n;

 DisjointSets(int n)

 {

 this->n = n;

 parent = new int[n+1];

 rnk = new int[n+1];

 for (int i = 0; i <= n; i++)

 {

 rnk[i] = 0;

 parent[i] = i;

 }

 }

 int find(int u)

mailto:i3CPU@2.10GHz

44

 {

 if (u != parent[u])

 parent[u] = find(parent[u]);

 return parent[u];

 }

 void merge(int x, int y)

 {

 x = find(x), y = find(y);

 if (rnk[x] > rnk[y])

 parent[y] = x;

 else

 parent[x] = y;

 if (rnk[x] == rnk[y])

 rnk[y]++;

 }

};

int Graph::kruskalMST()

{

 int mst_wt = 0;

 sort(edges.begin(), edges.end());

 DisjointSets ds(V);

 vector< pair<int, iPair> >::iterator it;

 for (it=edges.begin(); it!=edges.end(); it++)

 {

 int u = it->second.first;

 int v = it->second.second;

 int set_u = ds.find(u);

 int set_v = ds.find(v);

 if (set_u != set_v)

 { cout << u << " - " << v << endl;

 mst_wt += it->first;

 ds.merge(set_u, set_v);

 }

 }

 return mst_wt;

}

int main()

{int V = 9, E = 14;

 Graph g(V, E);

g.addEdge(0, 1, 4);

 g.addEdge(1, 2, 8);

 g.addEdge(2,3, 7);

 g.addEdge(3, 4, 9);

 g.addEdge(4, 5, 10);

 g.addEdge(5, 6, 2);

 g.addEdge(6, 7, 1);

 g.addEdge(0, 7, 8);

 g.addEdge(1, 7, 11);

 g.addEdge(7, 8, 7);

 g.addEdge(2, 8, 2);

 g.addEdge(2, 5, 4);

 g.addEdge(3, 5, 14);

 g.addEdge(6, 8, 6);

 cout << "Edges of MST are \n";

 int mst_wt = g.kruskalMST();

 cout << "\nWeight of MST is " << mst_wt;

 return 0;

}

6. Conclusions
By using Kruskal’s MST algorithm, the shortest

path of a graph can be found. To travel from city A to

City B, for example, the shortest path between these

cities can be achieved by using this algorithm.

However, in order to find the shortest path of a graph

by hand, it is time consuming and this work is so

tedious. This paper explains about Kruskal’s MST

algorithm in detail and implements it by using a

programming language. According to the experiment,

the resulted minimum spanning tree of the undirected

graph that has 9 vertices and 14 edges is generated by

taking about 0.1 seconds. In addition to the work of

this paper, its time complexity and analysis is also

considered in order to lead to the research work.

As the future work, I want to perform the analysis

this algorithm, not in serially, but in parallel for

distributed memory architecture.

Acknowledgment

 I would like to express my gratitude and my

heartfelt thanks to UJRI (2019) for submitting this

paper. I am also grateful to all my teachers from the

University of Computer Studies (Pakokku) who has

taught and guided as during the period of study for this

paper. Finally, I also thank all of my friends and

colleagues for supporting me in various ways.

References
[1] Alfred V. Aho, John E. Hopcroft, Jeffery D.

Ullman, “The Design and Analysis of Computer

Algorithms”, Addison-Wesley publishing, pp. 172-

176.

[2] Jaroslav, Helena, “The Origins of Minimum

Spanning Tree Algorithms”, Mathematical Subject

Classification, 2010, pp. 127-141.

[3] Kruskal, J.B., “ On the Shortest Spanning Subtree

of a Graph and the Traveling Salesman Problem”,

Proceedings of the American Mathematical Society

7(1), February 1956, pp. 48-50.

[4] Prim, R.C. “Shortest connection networks and

some generalizations”, Bell System Technology

Journal, vol. 36, Issue 6, 1957, pp. 1389-1401.

[5] S.K. Sathua, M.R. Kabat, R. Mohanty, “Lecture

Notes on Design and Analysis of Algorithms”,

VEER SURENDRA SAI UNIVERSITY OF

TECHNOLOGY, India.

[6] B. Munier, M. Aleem, M. A. Islam, M. A Iqbal, “A

Fast Implementation of Minimum Spanning Tree

Method and Applying it to Krusal’s and Prim’s

Algorithms”, Vol. 1, No. 1, 2017 Sukkur IBA, pp.

57-66.

[7] V. OSipov, P. Sanders, and J. Singler, “The Filter-

Kruskal Minimum Spanning Tree Algorithm”,

Proceeding of the Workshop on Algorithm

Engineering and Experiments, ALENEX 2009,

New York, New York, USA, January 3, 2009.

[8] V. Loncar, S. Škrbic´, and A. Balazˇ,

“Parallelization of Minimum Spanning Tree

45

Algorithms Using Distributed Memory

Architectures”, book chapter from Transactions on

Engineering Technologies: Special Volume of the

World Congress on Engineering 2013, pp. 543-

554.

[9] A. Katsigiannis, N. Anastopoulos, K. Nikas, and N.

Koziris, “An approach to parallelize Kruskal’s

algorithm using Helper Threads”, proceeding of

2012 IEEE 26th International Conference on

Parallel and Distributed Processing Symposium

&Ph D Forum (IPDPSW).

[10] https://www.geeksforgeeks.org/union-find/

46

A Spanning Tree with Minimum Weight of the One City and Six

Towns in Mandalay Region

Mon Yee Aye

Department of Engineering Mathematics

Mandalay Technological University

Mandalay, Myanmar.

cherry.monyi@gmail.com

Abstract

One of the possibilities when modelling a

transport network is to use a graph with vertices

and edges. They represent the nodes and arcs of

such a network respectively. This paper

proposes a novel network-reduction techniques,

based on a network-flow procedure, which is

referred to as Minimum Spanning Tree (MST)

with additional capabilities. In networking, we

use minimum spanning tree algorithm often. So

the problem is as stated here, given a graph

with weighted edges, find a tree of edges with

the minimum total weight that satisfies these

three properties: connected, acyclic and

consisting of | V | – 1 edges. In this paper, we

present the minimum weight of a spanning tree

using Prim's Algorithm. Firstly, the basic

definitions and notations in graph theory are

introduced. Then some properties of the tree are

expressed. Next the concept of Prim's

Algorithm is described. Finally, a minimum

weight spanning tree of the one city and six

towns in Mandalay Region is observed.

Keywords— Weighted graph, MST, Prim's

Algorithm, Adjacency matrix.

1. Introduction

In the study of graph theory, the problem of

finding a minimum spanning tree is interesting

and difficult. In a number of literature the

problem of finding the best spanning tree has

been studied, for example, spanning tree with

minimum diameter, minimum cost (weight)

spanning tree or the minimum degree spanning

tree. We consider the minimum weight spanning

tree (MST) of a weighted graph; that is, those

graphs where weights are preserved in every

connected graph. A MST of a graph G is a

spanning tree with minimum weight. In this

paper, first we discuss some structured properties

of MST. Then we present an algorithm to find a

MST of a weighted graph.

2. Definitions and Notations

A graph G = (V(G), E(G)) or G = (V, E)

consists of two finite sets, V(G) or V, the vertex

set of the graph, which is a non-empty set of

elements called vertices and E(G) or E, the edge

set of the graph, which is a possibly empty set of

elements called edges, such that each edge e in E

is assigned as an unordered pair of vertices (u,v),

called the end vertices of e [1]. Two nonparallel

edges are said to be adjacent if they are incident

on a common vertex. A walk in a graph G is a

finite sequence whose terms are alternately

vertices and edges. In a walk, there may be

repetition of vertices and edges. If the edges

e1,e2,…,ek of the walk W vo e1 v1 e2 v2…ekvk

are distinct then W is called a trail. A trail is a

47

walk in which no edge is repeated. A nontrivial

closed trail in a graph G is called a cycle if its

orgin and internal vertices are distinct [2]. A

graph with no cycle is an acyclic graph. A tree

is a connected acyclic graph. If the vertices vo,

v1,…, vk of the walk W vo e1 v1 e2 v2…ekvk are

distinct then W is called a path. A graph G is

called connected if every two of its vertices are

connected. A graph will real number on the

edges is called a weighted graph [3].

2.1. Some Properties of Trees

2.1.1 Theorem

Every pair of vertices in a tree is connected

by one and only one path.

2.1.2 Theorem

If there is one and only one path between

every pair of vertices in a graph G, then G is a

tree.

2.1.3 Theorem

A tree with n number of vertices has n – 1

number of edges.

2.1.4 Theorem

A connected graph with n vertices and n – 1

edges is a tree.

2.1.5 Theorem

A graph G has a spanning tree if and only if

G is connected [4].

2.2. Definitions

A tree T is called a spanning tree of a

connected graph G if T is a subgraph of G and if

T contains all the vertices of G. A minimum

spanning tree (MST) or Minimum weight

spanning tree is a subset of the edges of a

connected, edge-weighted undirected graph that

connects all the vertices together, without any

cycles and with the minimum possible total edge

weight. That is, it is a spanning tree whose sum

of edge weight is as small as possible. The

adjacency matrix of graph G with n vertices and

no parallel edge is an n by n symmetric binary

matrix X = (xij) n x n defined over the ring of

integers such that xij = 1, if there is an edge

between i
th

and j
th

 vertices = 0, if there is no edge

between them [5].

3. Applications of Minimum Weight

or Cost Spanning Tree (MST)

The standard application is to a problem like

phone network design. We have a business with

several offices; we want to lease phone lines to

connect them up with each other; and the phone

company charges different amounts of money to

connect different pairs of cities. We want a set of

lines that connects all offices with a minimum

total cost. There are quite a few use cases for

minimum spanning trees. One example would be

a telecommunications company trying to lay

cable in a new neighbourhood. If it is constrained

to bury the cable only along certain paths, then

there would be a graph containing the houses

connected by those paths. Some of the paths

might be more expensive, because they are

longer, or require the cable to be buried deeper;

these paths would be represented by edges with

larger weights. A spanning tree for that graph

would be a subset of those paths that has no

cycles but still connects every house; there might

be several spanning trees possible. A minimum

spanning tree would be one with the lowest total

cost, representing the least expensive path for

laying the cable ([5], [6]).

We now present Prim's algorithm for finding

a minimal spanning tree for a connected

weighted graph where no weight is negative.

3.1. Prim's Algorithm

Prim's Algorithm also use Greedy approach

to find the minimum spanning tree. In Prim's

Algorithm, we grow the spanning tree from a

starting position.

Let T be a tree in a connected weighted graph

G represented by two sets: the set vertices in T

and set of edges in T.

48

Step 1 : We start with a vertex v0 (say) in G and

no edge such that
0T {{v }, }.

Step 2 : We find the edge e1 = (v0,v1) in G such

that the end vertex v0 is in T and its

weight is minimum, i.e., w (e1) is

minimum. Adjoin v1 and e1 to T, i.e., T

= { {v0,v1} , e1}.

Step 3 : We choose the next edge eij = (vi,vj) in

such a way that end vertex vi is in T and

end vertex vj is not in T and weight of eij

is as small as possible. Adjoin vj and eij

to T.

Sept 4 : We repeat step 3 until T contains all the

vertices of G. The set T will give

minimal spanning tree of G. [7]

Now we apply to Prim's Algorithm, we can

find a minimum spanning tree connecting the

one city and six towns in Mandalay Region. We

collect the distance between two towns from

Google map and Ministry of Construction in

Mandalay Region. Firstly, we show the

distances, in kilometers, between one city and six

towns in Mandalay Region. Then we get the

connected graph G for the one city and six

towns. Next , we show the adjacency matrix

X(G) for connecting in one city and six towns.

Finally , we find a minimum spanning tree

connecting the one city and six towns.

We denote Mandalay by A, Madayar by B,

Patheingyi by C, Sintgaing by D, Kyaukse by E,

Amarapura by F and Sintgu by G.

Table 1. The distances, in kilometers, between

 one city and six downs

 A B C D E F G

A - 40.4 13.7 31.0 45.4 7.0 92.8

B 40.4 - 41.4 67.2 81.6 45.4 54.2

C 13.7 41.4 - 39.7 53.6 20.7 93.8

D 31.0 67.2 39.7 - 14.8 26.8 119.6

E 45.4 81.6 53.6 14.8 - 40.7 134.0

F 7.0 45.5 20.7 26.8 40.7 - 97.8

G 92.8 54.2 93.8 119.6 134.0 97.8 -

Then the connected graph G follows.

Figure 1. The connected graph G for one city

 and six towns

The adjacency matrix X (G) is

Initially, we start with a vertex A in G

and no edge such that T = {{A}, }. After

choosing the root vertex A, (A,B), (A,C), (A,D),

(A,E), (A,F) and (A,G) are six edges with 40.4,

13.7, 31.0, 45.4, 7.0 and 92.8, respectively. We

choose the edge (A,F) as it is lesser than the

other.

Figure 2. Corresponding tree T

 Then we have T ={{A,F},{(A,F)}}. Now the

tree A-7-F is treated as one vertex and we check

for all edges going out from it. We select the one

which has the smallest distance and include it in

the tree. We choose the edge (A,C) as it is lesser

than the other and the minimum weight is 13.7

km.

49

Figure 3. Corresponding tree T

Then we have T = {{A,F,C}, {(A,F),

(A,C)}}. After this step, A-F-A-C tree is formed.

Now we'll again treat it as a vertex and will

check all the edges again. However, we will

choose only the least distance edge. In this case,

(A,D) is the new edge with minimum weight is

31 km, which is lesser than other edges' distance

40.4, 45.4 and 92.8 km.

Figure 4. Corresponding tree T

Then we have T = {{A, F, C, D}, {(A,F). (A,

C), (A, D)} }. After adding vertex D to the

spanning tree, we'll treat it as a vertex and will

check all the edges again. In this case, (D,E) is

the new edge and the minimum weight is 14.8

km.

Figure 5. Corresponding tree T

Then we have T = { {A,F,C,D,E}, {(A,F),

(A,C), (A,D), (D,E)}}. After this step, A-F-A-C-

A-D-E tree is formed. Now we'll treat it as a

vertex and will check all the edges. We will

choose only the least

distance edge. In this

case, (A,B) is the new

edge with distance 40.4

km.

Figure 6. Corresponding tree T.

Then we have T = { {A,F,C,D,E,B} , {(A,F),

(A,C), (A,D), (D,E), (A,B)}}. After adding

vertex B to the spanning tree, we now have one

edge (B,G). Then, we can add vertex G. (B,G) is

the new edge with distance 54.2 km.

Figure 7. Corresponding tree T

Finally we have T = { {A,F,C,D,E,B,G},

{(A,F),(A,C),(A,D,(D,E),(A,B), (B,G)} }.

Total weight = 7 +13.7 + 31 + 14.8+ 40.4 +

54.2 = 161.1 kilometers which is the minimum

weight of the spanning tree appears in Figure 7.

4. Conclusion

50

Spanning tree find applications in many field,

including computer network, calling trees and

organization charts. The minimum weight

spanning tree can be used to approximately solve

the travelling saleman problem. For further

studies, one can observe the minimum weight

spanning trees for all towns in Mandalay Region

with the aids of computer codes such as C/C
++

,

MATLAB or JAVA language running these

codes by using various weight values from actual

information and data to solve Prim's Algorithm.

MST have direct applications in the design of

networks, including computer networks,

telecommunications networks, transportation

networks, water supply networks , and electrical

grids.

References

[1] Bondy, J.A and Murty, U.S.R, ''Graph Theory

with Applications'', Macmillan Press Ltd.,

London, 1976.

[2] Chin, F., Houck, D., "Algorithms for updating

minimal spanning trees", Journal of Computer

and System Sciences, 16(3):333-344,

doi:10.1016/0022-0000(78) 90022-3, 1978.

[3] Gross, J. and Yellon, J., ''Graph Theory and Its

Applications'', CRC Press Company, London ,

1999.

[4] Harray, F., "Graph Theory", Narosa Publishing

House, New Delhi, 2000.

[5] Parthasarathy, K. R., "Basic Graph Theory",

Tata McGraw-Hill Publishing Company

Limited, New Delhi, 1994.

[6] Rosen, K.H., "Discrete Mathematics and Its

Application'', McGraw-Hill, New York , 2012.

[7] Saha Ray, S., '' Graph Theory with Algorithms

and Its Applications'', DOI : 10.1007/978-81-

322-0750-4,© Springer Verlag, India, 2013.

 University of Computer Studies (Pakokku)

 Department of Higher Education

 Ministry of Education

 Myanmar

U J R I

