Proceedings of the First

University Journal of

Research and Innovation

December, 2019

Organized by
University of Computer Studies (Pakokku)

Proceeding of

The First University Journal of Research and Innovation 2019

December, 2019

Organized by

University of Computer Studies (Pakokku)
Department of Higher Education, Ministry of Education , Myanmar

University Journal of Research and Innovation

Volume 1, Issue $1 \quad 2019$

Editor in Chief

Dr.Tin Tin Thein, Pro-rector
University of Computer Studies (Pakokku)

Organizing Committee

Dr.Shwe Sin Thein

Dr.Swe Zin Aung
Dr.Moe Thuzar Htwe
Dr.Win Win Maw
Dr.Nwe Swe Aung
Dr.Khin Ma Lay
Daw San San Nwel

University Journal of Research and Innovation 2019

Volume 1, Issue 1, 2019

This journal and individual papers published at www.ucspkku.edu.mm.
All right reserved. Apart from fair dealing for the purposes of study, research, criticism of review as permitted under the copyright Act, no part of this book may be reproduced by any process without written permission from the publisher.

Copies:110

All research papers in this journal have undergone rigorous peerreviewed which is published annually. Full papers submitted for publication are refereed by the Associate Editorial Board through an anonymous referee process.

The authors of the paper bear the responsibility for their content.
Papers presented at the First University Journal of Research and Innovation(UJRI), University of Computer Studies (Pakokku), December 2019.

UJRI 2019 Editorial Board

\Rightarrow Dr.Tin Tin Thein, Pro-rector , University of Computer Studies (Pakokku)

- Dr.Khin Aye Than , Pro-rector , University of Computer Studies (Dawei)
- Dr.Soe Lin Aung, Pro-rector , University of Computer Studies (Magway)
- Dr.Nang Soe Soe Aung, Pro-rector , University of Computer Studies (Lashio)
- Dr.Shwe Sin Thein , Prof. , University of Computer Studies (Pakokku)
- Dr.May Aye Khaing , Prof., University of Computer Studies , Yangon.
- Dr.Khine Khine Oo , Prof., University of Computer Studies ,Yangon.
- Dr.Win Htay , Prof., University of Computer Studies (Thaton)
- Dr.Moe Zaw Thawe, Prof., Defence Services Academy(Pyi Oo Lwin)
- Dr.Win Lei Lei Phyu , Prof. , University of Computer Studies ,Yangon.
- Dr.Swe Zin Aung , Prof. , University of Computer Studies ,Mandalay.
- Dr.Moe Thuzar Htwe , Prof. , University of Computer Studies (Pakokku)
- Dr.Aye Thida, Prof. , University of Computer Studies, Mandalay.
$>$ Dr.Hnin Aye Than , Prof. , Myanmar Institute of Information Technology.
- Dr.Ami Kyaw , Prof. , Mandalay University
- Dr.Mar Mar Win , Prof. , Pakokku University
- Dr.Tin Tin Nwet, Assoc.Prof. , Technological University (Saging)
- Dr.Win Win Maw Assoc.Prof. , University of Computer Studies (Dawei)
- Dr.Nwe Swe Aung, Assoc.Prof. , University of Computer Studies (Pakokku)
- Dr.Khin Ma Lay , Assoc.Prof. , University of Computer Studies (Pakokku)
- Daw San San Nwe , Lecture , University of Computer Studies (Pakokku)

UJRI 2019 Editorial Board

Editor in Chief

人 Dr．Tin Tin Thein，Pro－rector，University of Computer Studies（Pakokku）
人 Daw Thin Thin Nwel，Assoc．Prof．，University of Computer Studies（Pakokku）
人 Daw San San Nwel，Lecture ，University of Computer Studies（Pakokku）

Proceedings of

The First University Journal of Information and Computing Science 2019

December, 2019
Contents

Artificial Intelligence \& Machine Learning

Recognizing of Shan Syllables sound base on Convolution Neural 1-7
Network ModelKhin Hninn Phyu, Aye Thida Win
Prediction of Diabetes Diseases by Building a Machine Learning 8-13 Model
Hnin Ei Ei Cho, Nan Yu Hlaing
Development of Remote Health Monitoring System 14-19
Khin Kyu Kyu Win, Su Myat Thaung, Thi Thi Soe, Atar Mon
Natural Language Processing
Text Independent Speaker Identification System By Perceptual 20-27 Linear Prediction(PLP) Aye Thida Win, Khin Hninn Phyu
Big Data Analysis
A Review on Big Data Analytics in Agriculture 28-31
Soe Soe Thet , San San Win

Parallel \& Distributed Computing

Application of Dijkstra's Shortest Algorithm for Road Map 32-38
Estimation in Sagaing Region
Thin Thin Swe, San San Maw
A Study for Kruksal's MST Algorithm Based on Design and 39-45 Analysis of Computer Algorithms Courses Aye Aye Naing, Soe Moe Aye
A Spanning Tree with Minimum Weight of the One City and Six 46-50 Towns in Mandalay Region
Mon Yee Aye
Image Processing
Automatic Detection and Classification of Rece Leaf Diseases 51-56
Using Image Processing
Pa Pa Lin
Analysis of High Performanance Computing using Raspberry Pi57-63
Cluster on High Computational ProblemMar Lar Win, Khin Mar Aye, Myo Hein Zaw
Idntification of Myanmar Rice Seeds by Size and Shape Features 64-70
Zon May Thet, Khin Thu Zar Win, Su Mon Thwin
Multi-Face Recognition for University Classroom Attendance 71-75System Using Face Recognition TechniqueThida Nyein, Aung Nway Oo
License Plate Locatization and Recognition using OCR based on 76-80 k-NN
Thida Win, Hnin Ei Latt, Yin Mon Swe
Human Computer Interaction
Designing Effective User Interface for Healthcare Applications81-85Thet Thet Aye Mon, Ei Ei Mon, Lwin Lwin Nyo

Database Management System \& Information Retrieval

Precison and Recall in the Evaluation of Information Retrieval 86-92 Yi Mar MyintA review on the staus of e-government implementation challenges93-99in MyanmarMoe Thida Naing , Myint San , Mie Mie Aung
Academic Education 4.0 in the Era of Industry 4.0 100-105
San San Nwel, Kyaut Kyaut Khaing, Ei Chal Mon, Tin Tin Thein
Smart Card Extraction for Immigration and Population System 106-110
Kyault Kyault Khaing, San San Newl, Khaing Khaing Soe
Information System Adoption of Private Hospitals in Mandalay 111-116
RegionKyi Kyi Thant, Thiha Htun
Database Security on Student Result System by Using Database 117-122 Management System
Thin Thin Yi, Zin Mar Yin , Phyu Phyu Myint
Network \& Security
A Lan Campus Infrastructure with Spanning Tree Protocol Attack 123-129 and Mitigation
Zin May Aye
Evaluation of Fiber Optic Link Performanace: Calculating power 130-136 Budget, Loss Budget and Distance Estimation Thazin Nwe , Mar Lar Win , Khin Mar Aye
Implementation of Knot DNS Server 137-143
Myint Myint Than
A Survey of Instruction Detection System for Software Defined 144-150NetworkingKhaing Khaing Soe, Lai Yi Aung, Mya Mya Htay, Kyault Kyault Khaing,Nay Aung Aung
Simulation of GSM Based Fire Safety Security Control System 151-157
Khin Ei Ei Khine, Yin Yin Mon, Nyan Linn

Data Mining \& Machine Learning

Text Classification using Vector Space Model and K-Nearest 158-164
Neighbor Algorithm
Hnin Wut Yee , Khin Sein Hlaing
Online Shopping System using K-means Clustering for User 165-170
Recommendation
Thwe Thwe Win
Comparison of Classification Methods on Breast Cancer Data 171-175
San San Win, Soe Soe Thet
Customer Churn Analysis in Banking Sector 176-180
Saw Thazin Khine , Win Win Myo
Pregnancy Risk Outcomes Prediction using FRAM and Naïve 181-187
BayesKyawt Shin Thu, Khin Ei Ei Chaw
Comparative Performance Analysis of Educational Data Using 188-194
Weka and OrangeNwet Yin Tun Thein, Tin Tin Hmwe
A Review of Data Mining Techniques and Their Applications in 195-200BusinessTin Tin Hmwe , Nwet Yin Tun Thein , Swe Swe Myint
Digital Business Management
Changing from Traditional Retail Transaction to Electronic Retail 201-205 Transacation Utilizing B2C E-Commerce Model
Aye Htike San, San San Nwel, Thinn Thinn Nwe
Design and Implementation of E-Commerce System using 206-212 Cassandra NoSQL Database
Zin Mar Yin, Win Lei Kay Khine , Thin Thin Yi
Calculate the Profit and Loss of Information System by Using 213-217 Time Value of Money (TVM)
Tue Tue Mar
Cost Estimation of Ball-Pen Production System 218-224
Lwin Lwin Nyo, Thet Thet Aye Mon, Phyu Phyu Myint

Electronics

Pic Based Room Temperature Control System Using DC Fans For 225-231Home Power ReducingSan San Wai , Kham Kham Saing , Poe Ei Phyu
Construction of Home Lighting Control System Using Touch 232-237 Sensor
Aung San Min, Min Soe Tun , Swe Wunna
Effect of Dopant Li Concentration on Optical and Electrical 238-242
Properties of $\mathrm{Li} / \mathrm{TiOx}$ Compsite Films
Nwe Nwe Kyi, Nyein Wint Lwin,Than Zaw Oo
Design and Control of Water Level Indicator 243-248
MyaMya Htay, KhaingKhaingSoe, San San Newl, Lai Yi Aung
Design and Construction of Digital Fire Alarm System for 249-255
MultipurposeMoe Min Min Aye, San Htar Oo , Aung Ye Htun, Yin Lae Aung
A Predictable Memory Controller for SDRAM 256-264
yee yee soe
Embedded System
Microcontroller Based Automatic Monitoring Exit/ Entry Counter 265-271
For Public Areas
Kham Kham Saing , San San Wai , Poe Ei Phyu
Construction of Microcontroller Based Fow Rate Display 272-276
Yoon Mone Phoo , Tin Tin Pyone
Gas Leakage Detector By Using Arduino UNO \& MQ-2 Sensor 277-280
Khin Thandar Myint , Saw Mya Nandar , Moe Thuzar Htwe
Cloud Computing
The Use of Moodle E-learning Platform: A Study in University of 281-286
Computer Studies(Pakokku)
San San Nwel, Lai Yi Aung, Khaing Khaing Soe, Tin Tin Thein
A Study of Cloud Computing Technology 287-293
Lai Yi Aung, San San Nwel, Khaing Khaing Soe, Mya Mya Htay

Software Engineering and Web Engineering

Effective Features of Web Search Engines 294-297Ei Chal Mon
Object-Oriented Hypermedia Design Methology in Modrn Web 298-302 Information Systems
Thae Thae Han, Mar Lar Htun, Mie Mie Aung
Digital Signal Processing
Analysis of Noise Cancellation using LMS and RLS Algorithms 303-310
Aye Theingi Oo, Theingi Ait, Nay Win Zaw
Stability of Transfer Function in Discrete-time System Using 311-315
Khaing Zin Win, Myint Myint Yi, Zay Oo Maung, Phyu Pyar Wai
Interconversion Of Various Number Systems In Digital 316-320
Technology
Moe Moe Thein, Thae Thae Han, Nyein Nyein Hlaing
Theoretical Nuclear Physics
Structure Calculation of Mass $9 \wedge$-Hypernuclei 321-326
Sandar Myint Oo
Proton Single Particle Energy Levels in 56Fe by using Numerov 327-331MethodSan San Mon, Tin Tin Nwe, Min Soe Tun
Two-Neutron Separation Energies of Even-Even Silicon Isotopes 332-337
in Effective Lagrangian Model
Thida Aye

Material Science

Synthesis And Identification of Naa (Plant Hormone) From Coal 338-344
Tar
Khin Mooh Theint, Tin Myint Htwe
Biosynthesis of Colloidal Silver Nanoparticles Using Coriander 345-349 Leaf Extract
Myo Myint Aung, Aye Aye San, Mar Mar Swe, Su Thaw Tar Wint
Influence of Trichoderma Compost Biofertilizer and Chemical 350-358
Fertilizer on Tomato Plant CultivationThet Su Min, Ni Ni Aung
Phytochemical Constituents Antimicrobial Activities, Isolation and 359-364
Functional Groups Identification of the Pure Unknown Compound from the Stem Bark of Croton oblongifoliusSieber ex Spreng.(That Yin Gyi)
N Khawn San, Po Po Than Htike, Ni Ni Aung
Decolorizing Properties of Dyes by Using Biosorbent Chitosan 365-372 from Prawn Shell Ni Ni Pe, San San Win, Lwin Mu Aung
Mathematics
Stability of Karman Vortex Street and Drag Coefficient for the 373-380
Various Shapes of Obstacles
Nwe Swe Aung
Optimal Order Quantity System By Using Demand Forecasting 381-386 Techniques
Lin Lin Let , Nwe Swe Aung , Aye Myat Mon Than
Application of Markov Chain to Foretell Watches Sales on 387-392
Specific Periods
Nila Aung Khaing, Khin Myat Zin
Solving Two Person Nonzero Sum Games 393-399Win Thant Sin

Experimental Nuclear Physics

Elemental Analysis of Olax scanden by EDX Method 400-405 Hmwe Hmwe Kyu
Water Quality Assessment of Tube Well Water from Selected 406-411Area in Loikaw Region, MyanmarKhin Htay Win, Thidar Khaing , Yinn Kay Khaing
English Language
Effective Approaches to Developing the Writing Skill 412-417 CHO CHO WIN
Students' Different Attitudes towards Learning English and Some 418-424
Collaborative Learning Approaches as a Tool of Enhancing Student's Language Proficiency
Khin Hnin Si
A Study of the Difficulties of Speaking Skills and How to Improve 425-432them
Htay Htay Won
Perspectives of Non-Major English Teachers on EFL Students at 433-436 UCS_PKKU
Htet Hlaing Nyein
Myanmar Language in Literature
437-446
Khin Ma Lay
 447-453
Myint Hlaing
 454-466
May Myo Swe, Yi Yi Maw, Su Hlaing Win

Author Index

Author Page No.
A
Aye Thida Win 20
Aye Aye Naing 39
Aye Htike San. 200
Aung San Min. 231
Aye Theingi Oo 303
C
Cho Cho Win 412
E
Ei Chal Mon 294
H
Hnin Ei Ei Cho 8
Hnin Wut Yee. 158
Hmwe Hmwe Kyu 400
Htay Htay Won. 425
Htet Hlaing Nyein 433
K
Khin Hninn Phyu 1
Khin Kyu Kyu Win 14
Kyault Kyault Khaing 106
Kyi Kyi Thant. 111
Khaing Khaing Soe 144
Khin Ei Ei Khine 151
Kyawt Shin Thu 180
Kham Kham Saing 265
Khin Thandar Myint 277
Khaing Zin Win 311
Khin Mooh Theint 338
Khin Htay Win 406
Khin Hnin Si 418
Khin Ma Lay 437
AuthorPage No.
L
Lwin Lwin Nyo 217
Lai Yi Aung 287
Lin Lin Let 381
M
Mon Yee Aye 46
Mar Lar Win. 57
Moe Thida Naing 93
Myint Myint Than 137
Mya Mya Htay 242
Moe Min Min Aye 248
Moe Moe Thein 316
Myo Myint Aung 345
Myint Hlaing 447
May Myo Swe 454
N
Nwet Yin Tun Thein 187
Nwe Nwe Kyi 237
N Khawn San 359
Ni Ni Pe 365
Nwe Swe Aung 373
Nila Aung Khaing 387
P
Pa Pa Lin 51
S
Soe Soe Thet 28
San San Nwel 100
San San Win 171
Saw Thazin Khine 176
San San Wai 224
San San Nwel 281
Sandar Myint Oo 321
San San Mon. 327
AuthorPage No.
T
Thin Thin Swe 32
Thida Nyein 71
Thida Win 76
Thet Thet Aye Mon 81
Thin Thin Yi 117
Thazin Nwe 130
Thwe Thwe Win. 165
Tin Tin Hmwe 194
Tue Tue Mar 212
Thae Thae Han 298
Thida Aye 332
Thet Su Min 350
W
Win Thant Sin 393
Y
Yi Mar Myint 86
Yee Yee Soe 256
Yoon Mone Phoo 272
Z
Zon May Thet 64
Zin May Aye 123
Zin Mar Yin 205

Application of Dijkstra's Shortest Path Algorithm for Road Map Estimation in Sagaing Region

Thin Thin Swe
Department of Engineering Mathematics Mandalay Technological University
Mandalay, Myanmar
thinthinswe.dr.mtu@gmail.com

San San Maw
Department of Engineering Mathematics
Mandalay Technological University
Mandalay, Myanmar.
dr.sansanmaw2017@gmail.com

Abstract

This research paper concerns with the application of the Dijkstra's algorithm in graph theory for the estimation of shortest road map to eleven destinations in Sagaing region. This algorithm can be used to find the shortest paths with positive weight graph from a single source node to a single destination node by denoting permanent if it has been determined. In this paper, Sagaing is used as a source node and the other ten towns in Sagaing region are used as destination nodes. The goal of this paper is to find the shortest paths from Sagaing to other towns by comparing the weighted values between any two different paths with their edge lengths that assigned by actual values. The values of distances and time between any two destinations are taken from Myanmar distance calculator website and compared the accuracy of the results using those values in Google Map.

Keywords-Path Finding, Weighted Graph, Shortest Paths, Dijkstra's Algorithm. Myanmar distance calculator.

1. Introduction

Sagaing region is an administrative region of Myanmar, located in the north-western part of the country. The region has an area of $93527 \mathrm{~km}^{2}$ and the largest region among the seven regions in Myanmar. The capital city of Sagaing region is Monywa. Sagaing region consists of 10 districts divided into 34 townships with 198 wards and villages. The major towns in this region are Monywa, Shwebo, Sagaing, Yinmarbin,

Kanbalu, Katha, Tigyaing, Kale, Tamu, Mawlaik and Pinlebu [1]. In many fields of applications, graphs theory [2] plays vital role for various modelling problems in real world such as travelling, transportation, traffic control, communications, and various computer applications and so on. This paper provides the shortest paths from one place to another by using Dijkstra's Algorithm in graph theory [3], [4]. Firstly, the descriptions of the algorithm are presented. Then the steps of the algorithm are explained. Finally the detailed implementation of the algorithm is illustrated to find the optimal paths for travelling to the eleven major towns in Sagaing region with shortest distances and minimum time.

2. Resources and Method

A graph G consists of two finite sets, a set V of points, called vertices, and a set E of connecting lines, called edges, such that each edge connects two vertices, called the endpoints of the edge [1]. Although straight lines are used to represent the edges, they are not straight in practice. Any place can be visited from any other place directly because all the destinations are linked by roads to each other. In this case, it is very important to find the shortest route, i.e., the route with the shortest total mileage or minimal travel time for overall trip. In this paper we consider one-to-all shortest path problem for determining the shortest path from a start town, Sagaing, to all the other ten famous destinations in Sagaing region.

2.1 Problem Definition

The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of the segment [1]. For a traveller, who wants to visit all interesting and famous places in a region, it is important to know the effective way. In this situation, not every road is equal. Some of them are longer, some aren't in good shape, and some have more traffic. i.e., you need more time for traversing some roads than other. We may represent that time with weights that we assign to the roads. When you plan a journey, there are different factors you might consider such as the shortest distance, the minimum time and the lowest cost for effective travelling. In this paper, we consider to optimize distance and time. The travelling cost from one place to another is not considered because costs are changed according to time period we collected.

2.1.1. Dijkstra's Iterative Shortest Path Algorithm

Dijkstra's algorithm, published in 1959 and named after its creator Dutch computer scientist Edsger Dijkstra, can be applied on a weighted graph [1]. The graph can either be directed or undirected. The following are the simple steps of the Dijkstra's algorithm:

Step 1. Initialization

- Label the start vertex as 0 .
- Box this number (permanent label).
- Label each vertex that is connected to the start vertex with its distance (temporary label).

Step 2. Box the minimum number.

- From this vertex, consider the distance to each connected vertex.
- If a distance is less than a distance already at this vertex, cross out this distance and write in the new distance. If there was no distance at the vertex, write down the new distance.

Step 3. Repeat from step 2 until the destination vertex is boxed.
When a vertex is boxed you do not reconsider it. You need to show all temporary labels together with their crossing out. The Dijkstra's algorithm for shortest paths is as follows: [2];

Figure 1. Flowchart for Dijkstra's shortest path algorithm

3. Result and Discussion

In this paper, the application of Dijkstra's algorithm to effective travelling from Sagaing to other ten towns in that region has been illustrated. Everyone who wants to travel needs to optimize the route for saving time and money. Although the detailed calculation for optimal result of distance has been focused, the other factors such as travel time that may effect in travelling have also been considered in this paper. Firstly, the weights on the links are referred as distances (km) for corresponding route.

Figure 2. Representation of towns in Sagaing region by weighted distance (km) connected graph [5]

3.1. Implementation of the Algorithm

The implementation steps of the Dijkstra's shortest path algorithm are presented as follows:
Step 1- To define the initial (start) town and label that point as number zero and box it (named it as permanent or current).
Step 2 - To search the towns that can be reached from permanent (current) and select the nearest town by using the formula;

$$
\operatorname{new} d_{j}=\min \left\{d_{j}, d_{i}+d_{i j}\right\}
$$

where d_{j} is the distance of adjacent town j. d_{i} is the distance value for the index of the current town, $d_{i j}$ is the distance values between $i^{\text {th }}$ town and $j^{\text {th }}$ town.
Step 3- Repeat the step 2 until all destination towns are permanent by changing the updated town with shortest distance to permanent list and box it. If we cannot reach any temporary labelled node from the current node, then all the temporary labels become permanent.
Step 4- Construct a minimum spanning tree to describe the shortest distances from start town to other destination towns in given network.

In this paper, we illustrate to find the optimal path (minimum spanning tree for shortest paths) from Sagaing to other destination towns in Sagaing region as follows.

Step 1
Sagaing (SG) is designed as the current town and the state of the SG is $(0, \mathrm{p})$. Every other town has state (∞, t).

Figure 3. The states of current town Sagaing (SG) as permanent

Step 2
The towns named Monywa (MY) and Shwebo (SB) can be reached from the current town SG. Update distance values for these cities;

$$
\begin{aligned}
& \mathrm{d}_{\text {Mon }}=\min \{\infty, 0+114.33\}=114.33 \\
& \mathrm{~d}_{\mathrm{SB}}=\min \{\infty, 0+93.28\}=93.28
\end{aligned}
$$

Hence the shortest distance is 93.28 at Shwebo (SB).

Box the number 93.28 at Shwebo and the state label at SB changes to permanent so its state is (93.28, p) while the states of Monywa (MY) remain temporary.

SB becomes the current town as shown in Figure 4.

Figure 4. Showing the current town Shwebo Step 3

We are not done, not all towns have been reached from SG, so we perform another iteration step (back to step 2).
Another implementation of step 2:
Monywa (MY), Kanbalu (KBL) and Tigyaing (TG) can be reached from the current city SB.

Update distance value for these towns.

$$
\begin{aligned}
\mathrm{d}_{\mathrm{MY}} & =\min \{114.33,93.28+100.35\} \\
& =114.33 \\
\mathrm{~d}_{\mathrm{KBL}} & =\min \{\infty, 93.28+104.83\}=198.11 \\
\mathrm{~d}_{\mathrm{TG}} & =\min \{\infty, 93.28+198.60\}=291.88
\end{aligned}
$$

Hence the shortest distance is 114.33 at Monywa (MY).

Box the number114.33 at Monywa and the state label at MY changes to permanent so its state is (114.33, p) while the states of KBL and TG remain temporary.

Monywa becomes the current town as shown in Figure 5.

Figure 5. Showing current town Monywa

Another Step 2

Yinmabin (YMB), Kale (KL) and Mawlaik (ML) can be reached from the current town Monywa (MY).

Update distance value for these towns.

$$
\mathrm{d}_{\mathrm{YMB}}=\min \{\infty, 114.33+46.82\}=161.15
$$

$$
\mathrm{d}_{\mathrm{KL}}=\min \{\infty, 114.33+235.4\}=349.73
$$

$$
\mathrm{d}_{\mathrm{ML}}=\min \{\infty, 114.33+252.43\}=366.76
$$

Now between the towns YMB and ML, the shortest distance is 161.15 at Yinmabin (YMB).

Box the number 161.15 at Yinmabin and the state label at YMB changes to permanent so its state is $(161.15, \mathrm{p})$ while the states of Mawlaik (ML) remain temporary.

YMB becomes the current town as shown in Figure 6.

Figure 6. The states of current town Yinmarbin (YMB) as permanent

Similar repeated calculation can be done for step 2 again and again until all towns have been changed to permanents.

Step 4
The final graph showing the minimum spanning tree of distances from start town, Sagaing, to other towns can be seen as follows:

Figure 7. The minimum spanning tree of shortest paths (km) from Sagaing to other towns in Sagaing region

The values assigned at each town (node) shown in graph with red-boxes, Figure 7, are the shortest distances to travel from Sagaing. Likewise, we can start any town and using the same algorithm to travel any other towns in effective way [6]. The order of towns forming permanent or current destinations for each iteration steps is Sagaing, Shwebo, Monywa, Yinmabin, Kalay, Mawlaik, Kanbalu, Tigyaing, Pinlebu, and Katha. Tamu is an end town of the network because its adjacent towns, Kale and Mawlaik, are already selected as permanent towns. So it is automatically selected as permanent by implementation step 3 .

We can also calculate for the minimum travel time started from Sagaing to other towns using the actual travel time (hour) between any two pair of towns from Myanmar distance calculator as weights and described on each road (edges) respectively [7].

Figure 8. Travel time (hour) between all pair towns in Sagaing region

Similar algorithm can be done to find the shortest path for minimum time travel and the final result is illustrated in figure 9 .

Figure 9. The minimum spanning tree of shortest paths (hour) from Sagaing to other towns in Sagaing region

The values assigned at each town shown in given network with red-boxes, Figure 9, are the minimum time for travelling from Sagaing to respective towns. We can see that the final minimum spanning tree for minimum time is the same as that for shortest distance. But the order of forming permanent town of Katha and Pinlebu is changed because of road qualities between those towns.

Table 1. Optimum results and shortest paths from Sagaing to other destinations in Sagaing region

Star \mathbf{t}	Destina tion	Shortes \mathbf{t} Distanc $\mathbf{e}(\mathbf{k m})$	Minim um Time (hr)	Shortest Paths
	MY	114.33	2.13	SG-MY
	SB	93.28	1.77	SG-SB
	YMB	161.15	3.21	SG-MY-YMB
	KBL	198.11	4.07	SG-SB-KBL
	KL	349.73	9.46	SG-MY-KL
	366.76	9.58	SG-MY-ML	
	TG	291.88	5.74	SG-SB-TG
	387.46	7.99	SG-SB-TG- KT	
	PLB	338.46	8	SG-SB-KBL- PLB
	TM	464.15	11.53	SG-MY-ML- TM

The last column of above table shows the shortest paths for each pair of places on both distance and time. All of the shortest paths for distance and time are the same. This means that the qualities of all roads on those routes are almost the same. The results obtained from research using Dijkstra's shortest paths algorithm have been compared with the data from Google Map and described in the following table 2.

Table 2. Comparison for the result in table 1 with Results from Google map [8]

$\begin{gathered} \hline \mathbf{S} \\ \mathbf{t} \\ \mathbf{a} \\ \mathbf{r} \\ \mathbf{t} \\ \mathbf{T} \\ \mathbf{o} \\ \mathbf{w} \\ \mathbf{n} \end{gathered}$	Desti natio n town	Results from research (Dijkstra)		Results from Google Map		Difference	
		Shorte st distan ce (km)	Time (hr)	Dista nce (km)	Time (hr)	Dista nce (km)	Time (hr)
$\begin{aligned} & \mathrm{S} \\ & \mathrm{~A} \\ & \mathrm{G} \\ & \mathrm{~A} \\ & \mathrm{I} \\ & \mathrm{~N} \\ & \mathrm{G} \end{aligned}$	MY	114.33	2.13	114	2.08	0.33	0.05
	SB	93.28	1.77	93.3	1.78	-0.02	-0.01
	$\begin{gathered} \mathrm{YM} \\ \mathrm{~B} \end{gathered}$	161.15	3.21	156	2.98	5.15	0.23
	KBL	198.11	4.07	198	4.01	0.11	0.06
	KL	349.73	9.46	345	9.26	4.73	0.2
	ML	366.76	9.58	362	9.33	4.76	0.25
	TG	291.88	5.74	266	5.68	25.88	0.06
	KT	387.46	7.99	361	7.97	26.46	0.02
	PLB	338.46	8	335	7.67	3.46	0.33
	TM	464.15	11.53	454	11.33	10.15	0.2

The last two columns in the table 2 show the difference between shortest paths and minimum time from algorithm and Google map. According to the difference data from above table, the accuracy of the results from Dijkstra's algorithm is reliable for practical situation.

3.2. Comparison and Recommendation

There are many algorithms to find the shortest paths in various situations but the special features of these algorithms are different. For example, Dijkstra's algorithm and Bellman Ford algorithm are both single-source shortest path algorithms but Dijkstra can only be used to find the shortest paths for positive weights and Bellman Ford is to handle for negative weight and circle in a graph. On the other hand, Floyd Warshall algorithm is for all sources to all destinations. The calculation time of Dijkstra algorithm is $n^{2}+m$, while Bellman Ford and Floyd Warshall algorithms are n^{3} and $n m$
respectively where n is the number of nodes and m is the number of edges in the network [9].

Dijkstra's algorithm is the most efficient one to find the shortest paths. It can be applied to both directed and undirected graphs, and calculation time is considerably faster than other algorithms. For these reasons and above comparison, we strongly recommend that Dijkstra's algorithm is an algorithm to get the best solution for finding shortest paths [6].

4. Conclusion and Future Works

In this work, Dijkstra's Algorithm is used to get the optimal results using actual distances and travel time between any two nodes (towns). Detailed descriptions and step by step procedure of the algorithm has been described with a flowchart and illustrated by determining the shortest paths started from Sagaing to other towns in Sagaing region using actual weighted values between any two towns. The accuracy of the results obtained from the research has been proved by comparing the results from Google Map. For further studies, this algorithm can also be applied to find the optimal results for traffic control, path finding in social networks, computer games, transportation systems, and operations research etc. Moreover, based on the flowchart and detailed calculation procedure, one can create computer codes such as $\mathrm{C} / \mathrm{C}++$ or JAVA, running these codes using various weighted values from actual information and data to solve general Dijkstra's shortest path problems.

Acknowledgments

The author would like to acknowledge her thank to Dr. Lin Lin Naing, Professor and Head, Faculty of Computing, University of Computer Studies, Hinthada, Ayeyarwady region and Dr. San San Maw, Professor, Department of Engineering Mathematics, Mandalay Technological University, Mandalay, Myanmar for their encouragement, invaluable comments and perfect supervision throughout my research work.

References

[1] Dijkstra's algorithm (2019), [Online]. Available: https://en.wikipedia.org/wiki/Dijkstra\'s_algo rithm
[2] E. Kreyszig, Advanced Engineering Mathema tics, 10th edition. John Wiley \& Sons, Inc., 2011, pp.970-990.
[3] P. Sharma, A. Planiya, "Shortest Path Finding of Wireless Optical Network using Dijkstra Algorithm and Analysis of Delay and Blocking Probability", International Journal of Research and Scientific Innovation (IJRSI). Vol. 3, Issue 4, April 2016.
[4] Solving Shortest Path Problem: Dijkstra's Algorithm, Lecture Note on Operations Research Methods. October 23, 2009. [Online]. Available: https://www.ifp.illinois.edu/~angelia/ge330fall0 9_dijkstra_118.pdf
[5] Myanmar Map [Online]: Available: http://www. un.org/Depts/Cartographic/map/profile/myanmar.pdf
[6] S. S. Maw, K. S. Lin, L. L. Naing, "Dijkstra's Algorithm for Effective Travelling to the Most Famous Destinations in Myanmar", International Journal of Mathematics Trends and Technology (IJMTT). Volume 65 Issue 8, August 2019. pp-4-12. [Online]: Available: https://www ijmttjournal.org/ Volume-65/Issue-8/IJMTTV65I8P502.pdf.
[7] Myanmar Distance Calculator [Online] Available: https://distance calculator.globefeed. com/Myanmar_Distance_Calculator.asp
[8] Google Map (2019). [Online]: Available: http://maps.google.com
[9] Z. Ali, "Comparison of Dijkstra's Algorithm with other proposed algorithms". International Academic Journal of Science and Engineering, Vol. 3, No. 7, 2016, pp. 53-66.

A Study for Kruskal's MST Algorithm Based on Design and Analysis of Computer Algorithms Courses

Aye Aye Naing, Soe Moe Aye
University of Computer Studies (Pakokku)
aanaing85@gmail.com

Abstract

Many problems in engineering and science can be formulated in terms of undirected or directed graph. To solve these problems, there are many algorithms. These are minimum spanning tree algorithms, transitive closure algorithms, shortest path algorithms, and so on. Among these, finding a minimum spanning tree (MST) of a graph is also a well known problem in graph theory with many practical applications. For example: travelling from one city to another city, designing the electronic circuitry, designing the telecommunication network and so on. In this paper, we focused on AA (Design and Analysis of Computer Algorithm) theory to teach algorithms. This paper discussed Kruskal's Minimum Spanning Tree (MST) algorithm.

KEYWORDS: graph, spanning tree, MST, vertices, edges

1. Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected, undirected graph with a cost function mapping edges to real numbers. A spanning tree is an undirected tree that connects all vertices in V . The cost of a spanning tree is just the sum of the cost of its edges. MST of G is a subset of E that forms a spanning tree of G with the least cost [1]. MST is one of the well-known classical graph problems which has many critical applications in network organization, VLSI layout and routing, touring problems, partitioning data points into clusters and various other fields. It was in 1926 that Boruvka [2] produced the first fully algorithm to find the MST. At later time, Kruskal and Prim developed the two most commonly used MST algorithms, Kruskal's algorithm [3] and Prim's algorithm [4], respectively. Kruskal's algorithm works on both connected and disconnected graph while Prim's algorithm can work only on the connected graph.

In this paper, Kruskal's MST algorithm is discussed and the main core work is presenting its implementation in C++ language and its time complexity. Kruskal's algorithm is one of the most known algorithms that address the MSF problems. The strictly ordered examination of the graph's edges in order to decide whether they are part of the MSF or not, prohibits the usage of well known parallel strategies, like data partitioning.

The rest of the paper is organized as follows: section 2 looks at the works relating to Kruskal's algorithm. Section 3 explains about how Kruskal's algorithm works with example. Section 4 presents the
implementation with the source code and explains the time complexity. Section 5 concludes the paper and gives its future work.

2. Related Works

Prim's algorithm starts with a tree that has only one edge, the minimum weight edge [5]. The edges (j, q) is added one by one such that node j is already included, node q is not included and weight $w t(j, q)$ is the minimum amongst all the edges (x, y) for which x is in the tree and y is not. In order to execute this algorithm efficiently, we have a node index near(j) associated with each node j that is not yet included in the tree. If a node is included in the tree, $\operatorname{near}(j)=0$. The node $n e a r(j)$ is selected into the tree such that $w t(j$, near (j)) in the minimum amongst all possible choices for near(j).

In [6], Munier et al. presented shared memorybased parallel implementations of Kruskal's and Prim's algorithms. To program the shared memory parallel machines, they used serial code with compiler directives method. They did the analysis the parallel MST programs executed using classical multi threaded and openMP-based execution models. The experiment showed that their proposed parallel algorithms achieve better performance than serial ones.
[7] proposed a simple modification of Kruskal's algorithm that avoids sorting edges that are obviously not in MST. This algorithm runs in time ($m+n \log n \log \frac{m}{m}$) for arbitrary graphs with random edge weights. The experiment showed that this proposed algorithm outperforms the original Kruskal's algorithm when the number of edges is increased.
V. Lonc`ar et al. [8] proposed parallel variants of Kruskal's and Prim's algorithm and made massage passing parallel machine with distributed memory. They considered the large graphs that can not fit into memory of one process. The experimental result showed that Prim's algorithm is a good choice for dense graphs while Kruskal's algorithm is better for sparse ones. Poor scalability of Prim's algorithm comes from its high communication cost while Kruskal's algorithm showed much better scaling to larger number of processes.

In [9], A. Katsigiannis et al. considered helper threading scheme used to parallelize efficiently Kruskal's Minimum Spanning Forest algorithm. First of all, this scheme employs a main thread that executes the regular, sequential Kruskal's algorithm and at each iteration, examines the edge with the next minimum weight. At the same time, a number of helper threads run concurrently with the main one and examine edges of bigger weight, checking whether they create a cycle
if added to current MSF. Whenever a cycle is discovered, the corresponding edge is marked as discarded. As these edges have been safely excluded from the MSF, the main thread needs to check only the edges that weren't rejected by the helper threads, thus performing less work compared to the sequential implementation. The more cycles found by the helper threads, the more offloading will be accomplished for the main thread.

3. Minimum Spanning Tree

Given a connected and undirected graph, a spanning tree of that graph is a sub graph that is a tree and connects all the vertices together. A single graph can have many different spanning trees. A minimum spanning tree (MST) or minimum weight spanning tree for a weighted, connected and undirected graph is a spanning tree with weight less than or equal to the weight of every other spanning tree. The weight of a spanning tree is the sum of weights given to each edge of the spanning tree. A minimum spanning tree is a special kind of tree that minimizes the lengths (or "weights") of the edges of the tree. This paper discusses Kruskal's Algorithm and Prim's Algorithm. Both are greedy algorithm to find the MST.

3.1 Kruskal's MST Algorithm

Kruskal's Algorithm builds the spanning tree by adding edges one by one into a growing spanning tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an edge which has least weight, and adds it to the growing spanning tree. Below are the steps for finding MST using Kruskal's algorithm:

- Sort all edges with respect to their weights
- Pick the smallest edge. Check whether it forms a cycle with the spanning tree formed or not. If cycle is not formed, include this edge. Else, discard it.
- Repeat step 2 until there is no edge in the sorted list.
The step 2 uses Union-Find algorithm to detect cycle.

3.1.1 Union-Find Algorithm

Union-Find algorithm performs on disjoint-set data structure. A disjoint-set data structure is a data structure that keeps track of a set of elements partitioned into a number of disjoint (non-overlapping) subsets [10]. Union-Find algorithm has two operations:

- Find: Determine which subset a particular element is in. This can be used for determining if two elements are in the same subset.
- Union: Join two subsets into a single subset.

3.2 Explanation with Example for of Kruskal's MST algorithm

Now, the explanation of how MST algorithm works is given with the example. Figure 1 shows the step by step procedures of Kruskal's MST algorithm.

begin

1. $T \leftarrow \emptyset$;
2. $V S \leftarrow \emptyset$;
3. construct a priority queue Q containing all edges in E;
4. for each vertex $v \in V$ do add $\{v\}$ to $V S$;
5. while $\|V S\|>1$ do
begin
6. choose (v, w), an edge in Q of lowest cost;
7. delete (v, w) from Q;
8. if v and w are in different sets W_{1} and W_{2} in VS then begin
9. replace W_{1} and W_{2} in VS by $W_{1} \cup W_{2}$;
10. add (v, w) to T
end end
end
Figure 1.Minimum-cost Spanning Tree Algorithm

Figure 2.An Undirected Graph with Cost on Edge
Figure 2 is considered as undirected graph input. According to step 3 of MST algorithm, the sorted list of edges is generated as shown in Table 1.

The followings steps are demonstration of from step 4 to step 10 of the algorithm. When all of the vertices have been added to the tree, the minimum spanning tree is finally outputted with cost 57 as shown in Figure 3.

1. Pick the edge v1-v7. No cycle is formed. Include it

Edge	Cost
$\mathrm{V} 1, \mathrm{v} 7$	1
$\mathrm{~V} 3, \mathrm{v} 4$	3
$\mathrm{~V} 2, \mathrm{v} 7$	4
$\mathrm{~V} 3, \mathrm{v} 7$	9
$\mathrm{~V} 2, \mathrm{v} 3$	15
$\mathrm{~V} 4, \mathrm{v} 7$	16
$\mathrm{~V} 4, \mathrm{v} 5$	17
$\mathrm{~V} 1, \mathrm{v} 2$	20
$\mathrm{~V} 1, \mathrm{v} 6$	23
$\mathrm{~V} 5, \mathrm{v} 7$	25
$\mathrm{~V} 5, \mathrm{v} 6$	28
$\mathrm{~V} 6, \mathrm{v} 7$	36

Table 1. Priority Queue List (Sorted List) of Edges
2. Pick the edge v3-v4. No cycle is formed. Include it.

3. Pick the edge v2-v7. No cycle is formed. Include it.

4. Pick the edge v3-v7. No cycle is formed. Include it.

5. Pick the edge v2-v3. This edge results in cycle. Discard it.
6. Pick the edge v4-v7. This edge also results in cycle. Discard it.
7. Pick the edge $\mathrm{v} 4-\mathrm{v} 5$. No cycle is formed. Include it.

8. Pick the edge v1-v2. This edge results in cycle. Discard it.
9. Pick the edge v1-v6. No cycle is formed. Include it.

Figure 3. Minimum-cost Spanning Tree

3.3. Prim's Algorithm

The Prim's Algorithm is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far. Let us understand it with an example: Consider the below input graph.

Figure 4: Undirected Graph with 9 Vertices and 14 Edges

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having $(9-1)$ $=8$ edges.

Now pick all edges one by one from sorted list of edges.

1. Pick edge 7-6: No cycle is formed, include it.

2. Pick edge 8-2: No cycle is formed, include it.

3. Pick edge 6-5: No cycle is formed, include it.

4. Pick edge 0-1: No cycle is formed, include it.

5. Pick edge 2-5: No cycle is formed, include it.

6. Pick edge 8-6: Since including this edge results in cycle, discard it.
7. Pick edge 2-3: No cycle is formed, include it.

8. Pick edge 7-8: Since including this edge results in cycle, discard it.
9. Pick edge 0-7: No cycle is formed, include it.

10. Pick edge 1-2: Since including this edge results in cycle, discard it.

11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals $(\mathrm{V}-1)$, the algorithm stops here.

4. Example Case Study for Traveling Salesperson Problem

A less obvious application is that the minimum spanning tree can be used to approximately solve the traveling salesman problem. A convenient formal way of defining this problem is to find the shortest path that visits each point at least once. Note that if you have a path visiting all points exactly once, it's a special kind of tree. For instance, twelve of sixteen spanning trees are actually paths. If you have a path visiting some vertices more than once, you can always drop some edges to get a tree. So in general the MST weight is less than the TSP weight, because it's a minimization over a strictly larger set.

On the other hand, if you draw a path tracing around the minimum spanning tree, you trace each edge twice and visit all points, so the TSP weight is less than twice the MST weight. Therefore this tour is within a factor of two of optimal.

5. Implementation and Analysis

In this section, implementation for Kruskal's MST algorithm is presented and its time complexity is also considered in big O notation. For the implementation, $\mathrm{C}++$ language with GCC 32 bit release compiler is used.

5.1 Implementation Interface

Input : Undirected graph in Figure 2
Method: Pseudo Code in Figure 1
Output: Minimum spanning tree with cost 57 as shown in Figure 5.

Figure 5: Minimum Spanning Tree with Cost 57 Displayed in Console Mode

For this implementation, the node names of the input graph are redefined as follows:
$v 1 \Rightarrow 1, \quad v 2 \Rightarrow 2, v 3 \Rightarrow 3, v 4 \Rightarrow 4, v 5 \Rightarrow 5, v 6 \Rightarrow 6, v 7 \Rightarrow 7$
When the next undirected graph in Figure 7 is considered as input, the minimum spanning tree with cost 37 is generated as shown in Figure 6.

Figure6: Undirected Graph with 9 Vertices and 14 Edges

Figure 7: Minimum Spanning Tree with Cost 37 and 8 Edges

5.2 Difference in Kruskal's algorithm and Prim's algorithm

Both are greedy algorithm to find the MST.
However, let me show the difference with the help of table:

Prims Algorithm	Kruskal Algorithm
It satato build the MST fom any of the Node.	Issatto build de MSTTfom Minimum weighted vertex inthe graph.
Adjencay Matrix, Binary Heepo Fibonaci Heapis used in Pinma algoithm	Disjoint Setis used in Kuskal Algorithm.
Prims Algoithm nn fasterindense graphs	Knuskal Algorithm nun fasterin spase graphs
Iime Complexity is (EV \log V) with binay heap and $(E+V \log V)$ with hlonacci heap.	Time Complexity is 0($\log \mathrm{V}$)
The next Node inclucded must be connected with thenode we taverse	The nexte edge indude may or may hot be connected but should not fom the cycle.
It taverse the one node saveral time inorder to getitminimum distance	Ittarese the edge only once and based on ycle it will eithererejectitor acceppit,
Greedy y Igorithm	Greedy Agorithm

5.3 Time Complexity and Experimental Run Time

For E edges and V vertices,
Sorting the edges $: O(E \log E)$
Find operations : $O(2 E)$ for at most $2 E$ find operations
Union operation : $\mathrm{O}(\mathrm{V} \log \mathrm{V})$ for at most $V-1$ union operations
Thus,
total run time

$$
\begin{array}{r}
o(E \log E)+o(2 E)+ \\
o(V \log V)
\end{array}
$$

$=O(E l o g E)$ since the
maximum value E can be V^{2}.
According to my experiment, the running time is 0.1 sec for 9 vertices and 14 edges implemented by using C++ language with GCC 32 bit release compiler, under Intel(R) Core(TM) $\underline{3 C P U} @ 2.10 \mathrm{GHz}$ and RAM4.00 GB .

The following is the source code for MST algorithm implementation.

```
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> iPair;
struct Graph
{
        int V, E;
    vector< pair<int, iPair> > edges;
    Graph(int V, int E)
    {
        this->V = V;
        this->E = E;
    }
    void addEdge(int u, int v, int w)
    {
        edges.push_back({w, {u,v}});
    }
    int kruskalMST();
};
struct DisjointSets
{
    int *parent, *rnk;
    int n;
    DisjointSets(int n)
    {
        this->n=n;
        parent = new int[n+1];
        rnk = new int[n+1];
        for (int i = 0; i <= n; i++)
        {
            rnk[i] = 0;
            parent[i] = i;
        }
    }
    int find(int u)
```

```
    {
        if (u != parent[u])
            parent[u] = find(parent[u]);
        return parent[u];
    }
    void merge(int x, int y)
    {
        x = find(x), y = find(y);
        if (rnk[x] > rnk[y])
            parent[y] = x;
        else
            parent[x] = y;
        if (rnk[x] == rnk[y])
        rnk[y]++;
    }
};
int Graph::kruskalMST()
{
    int mst_wt = 0;
    sort(edges.begin(), edges.end());
    DisjointSets ds(V);
    vector< pair<int, iPair> > ::iterator it;
    for (it=edges.begin(); it!=edges.end(); it++)
    {
        int u = it->second.first;
        int v = it-> second.second;
        int set_u = ds.find(u);
        int set_v = ds.find(v);
        if (set_u != set_v)
        { cout << u << " - " << v << endl;
        mst_wt += it->first;
        ds.merge(set_u, set_v);
        }
    }
    return mst_wt;
}
int main()
{int V=9, E = 14;
    Graph g(V, E);
g.addEdge(0, 1, 4);
    g.addEdge(1, 2, 8);
    g.addEdge(2,3, 7);
    g.addEdge(3, 4, 9);
    g.addEdge(4, 5, 10);
    g.addEdge(5, 6, 2);
    g.addEdge(6, 7, 1);
    g.addEdge(0, 7, 8);
    g.addEdge(1, 7, 11);
    g.addEdge(7, 8, 7);
    g.addEdge(2, 8, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 5, 14);
    g.addEdge(6, 8, 6);
    cout << "Edges of MST are \n";
    int mst_wt = g.kruskalMST();
    cout << "\nWeight of MST is " << mst_wt;
    return 0;
}
```


6. Conclusions

By using Kruskal's MST algorithm, the shortest path of a graph can be found. To travel from city A to City B, for example, the shortest path between these cities can be achieved by using this algorithm. However, in order to find the shortest path of a graph by hand, it is time consuming and this work is so tedious. This paper explains about Kruskal's MST algorithm in detail and implements it by using a programming language. According to the experiment, the resulted minimum spanning tree of the undirected graph that has 9 vertices and 14 edges is generated by taking about 0.1 seconds. In addition to the work of this paper, its time complexity and analysis is also considered in order to lead to the research work.

As the future work, I want to perform the analysis this algorithm, not in serially, but in parallel for distributed memory architecture.

Acknowledgment

I would like to express my gratitude and my heartfelt thanks to UJRI (2019) for submitting this paper. I am also grateful to all my teachers from the University of Computer Studies (Pakokku) who has taught and guided as during the period of study for this paper. Finally, I also thank all of my friends and colleagues for supporting me in various ways.

References

[1] Alfred V. Aho, John E. Hopcroft, Jeffery D. Ullman, "The Design and Analysis of Computer Algorithms", Addison-Wesley publishing, pp. 172176.
[2] Jaroslav, Helena, "The Origins of Minimum Spanning Tree Algorithms", Mathematical Subject Classification, 2010, pp. 127-141.
[3] Kruskal, J.B., " On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem", Proceedings of the American Mathematical Society 7(1), February 1956, pp. 48-50.
[4] Prim, R.C. "Shortest connection networks and some generalizations", Bell System Technology Journal, vol. 36, Issue 6, 1957, pp. 1389-1401.
[5] S.K. Sathua, M.R. Kabat, R. Mohanty, "Lecture Notes on Design and Analysis of Algorithms", VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, India.
[6] B. Munier, M. Aleem, M. A. Islam, M. A Iqbal, "A Fast Implementation of Minimum Spanning Tree Method and Applying it to Krusal's and Prim's Algorithms", Vol. 1, No. 1, 2017 Sukkur IBA, pp. 57-66.
[7] V. OSipov, P. Sanders, and J. Singler, "The FilterKruskal Minimum Spanning Tree Algorithm", Proceeding of the Workshop on Algorithm Engineering and Experiments, ALENEX 2009, New York, New York, USA, January 3, 2009.
[8] V. Loncar, S. Škrbic', and A. Balaž, "Parallelization of Minimum Spanning Tree

Algorithms Using Distributed Memory Architectures", book chapter from Transactions on Engineering Technologies: Special Volume of the World Congress on Engineering 2013, pp. 543554.
[9] A. Katsigiannis, N. Anastopoulos, K. Nikas, and N. Koziris, "An approach to parallelize Kruskal's algorithm using Helper Threads", proceeding of 2012 IEEE 26th International Conference on Parallel and Distributed Processing Symposium \&Ph D Forum (IPDPSW).
[10] https://www.geeksforgeeks.org/union-find/

A Spanning Tree with Minimum Weight of the One City and Six Towns in Mandalay Region

Mon Yee Aye
Department of Engineering Mathematics
Mandalay Technological University
Mandalay, Myanmar.
cherry.monyi@gmail.com

been studied, for example, spanning tree with minimum diameter, minimum cost (weight)

Abstract

One of the possibilities when modelling a transport network is to use a graph with vertices and edges. They represent the nodes and arcs of such a network respectively. This paper proposes a novel network-reduction techniques, based on a network-flow procedure, which is referred to as Minimum Spanning Tree (MST) with additional capabilities. In networking, we use minimum spanning tree algorithm often. So the problem is as stated here, given a graph with weighted edges, find a tree of edges with the minimum total weight that satisfies these three properties: connected, acyclic and consisting of $|V|-1$ edges. In this paper, we present the minimum weight of a spanning tree using Prim's Algorithm. Firstly, the basic definitions and notations in graph theory are introduced. Then some properties of the tree are expressed. Next the concept of Prim's Algorithm is described. Finally, a minimum weight spanning tree of the one city and six towns in Mandalay Region is observed.

Keywords - Weighted graph, MST, Prim's Algorithm, Adjacency matrix.

1. Introduction

In the study of graph theory, the problem of finding a minimum spanning tree is interesting and difficult. In a number of literature the problem of finding the best spanning tree has
spanning tree or the minimum degree spanning tree. We consider the minimum weight spanning tree (MST) of a weighted graph; that is, those graphs where weights are preserved in every connected graph. A MST of a graph G is a spanning tree with minimum weight. In this paper, first we discuss some structured properties of MST. Then we present an algorithm to find a MST of a weighted graph.

2. Definitions and Notations

A graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ or $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of two finite sets, $\mathrm{V}(\mathrm{G})$ or V , the vertex set of the graph, which is a non-empty set of elements called vertices and $\mathrm{E}(\mathrm{G})$ or E , the edge set of the graph, which is a possibly empty set of elements called edges, such that each edge e in E is assigned as an unordered pair of vertices (u, v), called the end vertices of e [1]. Two nonparallel edges are said to be adjacent if they are incident on a common vertex. A walk in a graph G is a finite sequence whose terms are alternately vertices and edges. In a walk, there may be repetition of vertices and edges. If the edges $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}$ of the walk $\mathrm{W} \equiv \mathrm{v}_{\mathrm{o}} \mathrm{e}_{1} \mathrm{~V}_{1} \mathrm{e}_{2} \mathrm{v}_{2} \ldots \mathrm{e}_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}$ are distinct then W is called a trail. A trail is a
walk in which no edge is repeated. A nontrivial closed trail in a graph G is called a cycle if its orgin and internal vertices are distinct [2]. A graph with no cycle is an acyclic graph. A tree is a connected acyclic graph. If the vertices v_{o}, $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ of the walk $\mathrm{W} \equiv \mathrm{v}_{\mathrm{o}} \mathrm{e}_{1} \mathrm{v}_{1} \mathrm{e}_{2} \mathrm{v}_{2} \ldots \mathrm{e}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}$ are distinct then W is called a path. A graph G is called connected if every two of its vertices are connected. A graph will real number on the edges is called a weighted graph [3].

2.1. Some Properties of Trees

2.1.1 Theorem

Every pair of vertices in a tree is connected by one and only one path.

2.1.2 Theorem

If there is one and only one path between every pair of vertices in a graph G, then G is a tree.

2.1.3 Theorem

A tree with n number of vertices has $n-1$ number of edges.

2.1.4 Theorem

A connected graph with n vertices and $n-1$ edges is a tree.

2.1.5 Theorem

A graph G has a spanning tree if and only if G is connected [4].

2.2. Definitions

A tree T is called a spanning tree of a connected graph G if T is a subgraph of G and if T contains all the vertices of G. A minimum spanning tree (MST) or Minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weight is as small as possible. The adjacency matrix of graph G with n vertices and no parallel edge is an n by n symmetric binary matrix $\mathrm{X}=\left(\mathrm{X}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{n}}$ defined over the ring of
integers such that $\mathrm{x}_{\mathrm{ij}}=1$, if there is an edge between $i^{\text {th }}$ and $j^{\text {th }}$ vertices $=0$, if there is no edge between them [5].

3. Applications of Minimum Weight or Cost Spanning Tree (MST)

The standard application is to a problem like phone network design. We have a business with several offices; we want to lease phone lines to connect them up with each other; and the phone company charges different amounts of money to connect different pairs of cities. We want a set of lines that connects all offices with a minimum total cost. There are quite a few use cases for minimum spanning trees. One example would be a telecommunications company trying to lay cable in a new neighbourhood. If it is constrained to bury the cable only along certain paths, then there would be a graph containing the houses connected by those paths. Some of the paths might be more expensive, because they are longer, or require the cable to be buried deeper; these paths would be represented by edges with larger weights. A spanning tree for that graph would be a subset of those paths that has no cycles but still connects every house; there might be several spanning trees possible. A minimum spanning tree would be one with the lowest total cost, representing the least expensive path for laying the cable ([5], [6]).

We now present Prim's algorithm for finding a minimal spanning tree for a connected weighted graph where no weight is negative.

3.1. Prim's Algorithm

Prim's Algorithm also use Greedy approach to find the minimum spanning tree. In Prim's Algorithm, we grow the spanning tree from a starting position.

Let T be a tree in a connected weighted graph G represented by two sets: the set vertices in T and set of edges in T .

Step 1: We start with a vertex v_{0} (say) in G and no edge such that $\mathrm{T}=\left\{\left\{\mathrm{v}_{0}\right\}, \phi\right\}$.
Step 2: We find the edge $e_{1}=\left(v_{0}, v_{1}\right)$ in G such that the end vertex v_{0} is in T and its weight is minimum, i.e., $w\left(e_{1}\right)$ is minimum. Adjoin v_{1} and e_{1} to T , i.e., T $=\left\{\left\{\mathrm{v}_{0}, \mathrm{v}_{1}\right\}, \mathrm{e}_{1}\right\}$.
Step 3: We choose the next edge $\mathrm{e}_{\mathrm{ij}}=\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ in such a way that end vertex v_{i} is in T and end vertex v_{j} is not in T and weight of $e_{i j}$ is as small as possible. Adjoin v_{j} and e_{ij} to T .
Sept 4 : We repeat step 3 until T contains all the vertices of G. The set T will give minimal spanning tree of G. [7]
Now we apply to Prim's Algorithm, we can find a minimum spanning tree connecting the one city and six towns in Mandalay Region. We collect the distance between two towns from Google map and Ministry of Construction in Mandalay Region. Firstly, we show the distances, in kilometers, between one city and six towns in Mandalay Region. Then we get the connected graph G for the one city and six towns. Next, we show the adjacency matrix $\mathrm{X}(\mathrm{G})$ for connecting in one city and six towns. Finally, we find a minimum spanning tree connecting the one city and six towns.

We denote Mandalay by A, Madayar by B, Patheingyi by C, Sintgaing by D, Kyaukse by E, Amarapura by F and Sintgu by G.

Table 1. The distances, in kilometers, between one city and six downs

	A	B	C	D	E	F	G
A	-	40.4	13.7	31.0	45.4	7.0	92.8
B	40.4	-	41.4	67.2	81.6	45.4	54.2
C	13.7	41.4	-	39.7	53.6	20.7	93.8
D	31.0	67.2	39.7	-	14.8	26.8	119.6
E	45.4	81.6	53.6	14.8	-	40.7	134.0
F	7.0	45.5	20.7	26.8	40.7	-	97.8
G	92.8	54.2	93.8	119.6	134.0	97.8	-

Then the connected graph G follows.

Figure 1. The connected graph G for one city and six towns
The adjacency matrix $X(G)$ is
A
A
B
C
D
E
F
A
G $\quad\left[\begin{array}{lllllll}\mathrm{B} & \mathrm{B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{F} & \mathrm{G} \\ 13.7 & 40.4 & 13.7 & 31.0 & 45.4 & 7.0 & 92.8 \\ 31.0 & 67.2 & 31.4 & 0 & 39.7 & 0 & 14.8 \\ 45.4 & 81.6 & 53.6 & 14.8 & 0 & 40.7 & 134.0 \\ 7.0 & 45.5 & 20.7 & 26.8 & 40.7 & 0 & 97.8 \\ 92.8 & 54.2 & 93.8 & 119.6 & 134.0 & 97.8 & 0\end{array}\right]$

Initially, we start with a vertex A in G and no edge such that $T=\{\{\mathrm{A}\}, \phi\}$. After choosing the root vertex $\mathrm{A},(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{C}),(\mathrm{A}, \mathrm{D})$, $(\mathrm{A}, \mathrm{E}),(\mathrm{A}, \mathrm{F})$ and (A, G) are six edges with 40.4 , 13.7, 31.0, 45.4, 7.0 and 92.8 , respectively. We choose the edge (A, F) as it is lesser than the other.

Figure 2. Corresponding tree T
Then we have $\mathrm{T}=\{\{\mathrm{A}, \mathrm{F}\},\{(\mathrm{A}, \mathrm{F})\}\}$. Now the tree A-7-F is treated as one vertex and we check for all edges going out from it. We select the one which has the smallest distance and include it in the tree. We choose the edge (A, C) as it is lesser than the other and the minimum weight is 13.7 km.

Figure 3. Corresponding tree T
Then we have $T=\{\{A, F, C\},\{(A, F)$, $(\mathrm{A}, \mathrm{C})\}\}$. After this step, A-F-A-C tree is formed. Now we'll again treat it as a vertex and will check all the edges again. However, we will choose only the least distance edge. In this case, (A, D) is the new edge with minimum weight is 31 km , which is lesser than other edges' distance 40.4, 45.4 and 92.8 km .

Figure 4. Corresponding tree T
Then we have $\mathrm{T}=\{\{\mathrm{A}, \mathrm{F}, \mathrm{C}, \mathrm{D}\},\{(\mathrm{A}, \mathrm{F}) .(\mathrm{A}$, C), (A, D) \} \}. After adding vertex D to the spanning tree, we'll treat it as a vertex and will check all the edges again. In this case, (D, E) is the new edge and the minimum weight is 14.8 km.

Figure 5. Corresponding tree \mathbf{T}
Then we have $T=\{\{A, F, C, D, E\},\{(A, F)$, $(\mathrm{A}, \mathrm{C}),(\mathrm{A}, \mathrm{D}),(\mathrm{D}, \mathrm{E})\}\}$. After this step, A-F-A-C-A-D-E tree is formed. Now we'll treat it as a vertex and will check all the edges. We will
choose only the least distance edge. In this case, (A, B) is the new edge with distance 40.4 km.

Figure 6. Corresponding tree T.
Then we have $\mathrm{T}=\{\{\mathrm{A}, \mathrm{F}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{B}\},\{(\mathrm{A}, \mathrm{F})$, $(\mathrm{A}, \mathrm{C}),(\mathrm{A}, \mathrm{D}),(\mathrm{D}, \mathrm{E}),(\mathrm{A}, \mathrm{B})\}\}$. After adding vertex B to the spanning tree, we now have one edge (B, G). Then, we can add vertex G. (B, G) is the new edge with distance 54.2 km .

Figure 7. Corresponding tree T
Finally we have $T=\{\{A, F, C, D, E, B, G\}$, $\{(\mathrm{A}, \mathrm{F}),(\mathrm{A}, \mathrm{C}),(\mathrm{A}, \mathrm{D},(\mathrm{D}, \mathrm{E}),(\mathrm{A}, \mathrm{B}),(\mathrm{B}, \mathrm{G})\}\}$.

Total weight $=7+13.7+31+14.8+40.4+$ $54.2=161.1$ kilometers which is the minimum weight of the spanning tree appears in Figure 7.

4. Conclusion

Spanning tree find applications in many field, including computer network, calling trees and organization charts. The minimum weight spanning tree can be used to approximately solve the travelling saleman problem. For further studies, one can observe the minimum weight spanning trees for all towns in Mandalay Region with the aids of computer codes such as $\mathrm{C} / \mathrm{C}^{++}$, MATLAB or JAVA language running these codes by using various weight values from actual information and data to solve Prim's Algorithm. MST have direct applications in the design of networks, including computer networks, telecommunications networks, transportation networks, water supply networks, and electrical grids.

References

[1] Bondy, J.A and Murty, U.S.R, "Graph Theory with Applications", Macmillan Press Ltd., London, 1976.
[2] Chin, F., Houck, D., "Algorithms for updating minimal spanning trees", Journal of Computer and System Sciences, 16(3):333-344, doi:10.1016/0022-0000(78) 90022-3, 1978.
[3] Gross, J. and Yellon, J., "Graph Theory and Its Applications", CRC Press Company, London , 1999.
[4] Harray, F., "Graph Theory", Narosa Publishing House, New Delhi, 2000.
[5] Parthasarathy, K. R., "Basic Graph Theory", Tata McGraw-Hill Publishing Company Limited, New Delhi, 1994.
[6] Rosen, K.H., "Discrete Mathematics and Its Application", McGraw-Hill, New York, 2012.
[7] Saha Ray, S., " Graph Theory with Algorithms and Its Applications", DOI : 10.1007/978-81-322-0750-4,© Springer Verlag, India, 2013.

University of Computer Studies (Pakokku)
 Department of Higher Education
 Ministry of Education
 Myanmar

